NVIDIA Shifts GPU Clusters Into Second Gear

By Michael Feldman

May 4, 2009

GPU-accelerated clusters are moving quickly from the “kick the tires” stage into production systems, and NVIDIA has positioned itself as the principal driver for this emerging high performance computing segment.

The company’s Tesla S1070 hardware, along with the CUDA computing environment, are starting to deliver real results for commercial HPC workloads. For example Hess Corporation has a 128-GPU cluster that is performing seismic processing for the company. The 32 S1070s (4 GPUs per board) are paired with dual-socket quad-core CPU servers and are performing at the level of about 2,000 dual-socket CPU servers for some of their workloads. For Hess, that means it can get the same computing horsepower for 1/20 the price and for 1/27 the power consumption.

Hess is not alone. Brazilian oil company Petrobas has built a 72-GPU Tesla cluster for its seismic codes. Although the company hasn’t released specific performance data, based on preliminary testing, Petrobas expects to see a 5X to 20X improvement compared to a CPU-based cluster platform. Chevron and Total SA are also experimenting with GPU acceleration and although they haven’t divulged what types of systems are being used, NVIDIA products are almost certainly in the mix.

BNP Paribas, a French banking firm, is using a Tesla S1070 to compute equity pricing on the derivatives the company tracks. According to Stéphane Tyc, head of the company’s Corporate and Investment Banking Division in the GECD Quantitative Research group, they were able to achieve the same performance as 500 CPU cores with just half a Tesla board (two GPUs). Better yet, the platform delivered a 100-fold increase in computations per watt compared to a CPU-only system. “We were actually surprised to get numbers of that magnitude,” said Tyc. As of March, BNP Paribas had not deployed the system for live trading, but there are already plans in place to port more software.

Up until now, all of these GPU-accelerated clusters had to be custom-built. In an effort to get a more “out of box” experience for GPU cluster users, NVIDIA has launched its “Tesla GPU Preconfigured Cluster” strategy. Essentially, it’s a set of guidelines for OEMs and system builders for NVIDIA-accelerated clusters, the idea being to make GPU clusters as easy to order and install as their CPU-only counterparts. It’s basically a parallel strategy to NVIDIA’s personal supercomputer workstation program, which the company rolled out in November 2008.

The guidelines consist of a set of hardware and software specs that define a basic GPU cluster configuration. In a nutshell, each cluster has a CPU head node that runs the cluster management software, an InfiniBand switch for node-to-node communication, and four or more GPU-accelerated compute nodes. Each compute node has a CPU server hooked up to a Tesla S1070 via PCI Express. On the software side, a system includes clustering software, MPI, and NVIDIA’s CUDA development tools. Most of this is just standard fare, but the cluster software is typically a Rocks roll for CUDA or something equivalent.

NVIDIA itself isn’t building any systems. As the company did with personal supercomputing, it has enlisted partner OEMs and distributors to offer GPU-accelerated clusters. The system vendors can add value by selling their own clustering software, tools, services and hardware options. Currently NVIDIA has signed more than a dozen players, including many of the usual HPC suspects: Cray, Appro, Microway, Penguin Computing, Colfax International, and James River Technical. NVIDIA has also corralled some regional workstation and server distributors to attain a more global reach. In this category we have CADNetwork (Germany), E4 (Italy), T-Platforms (Russia), Netweb Technologies (India), Viglen (UK). The complete list of partners is on NVIDIA’s Web site.

A bare-bones system — a head node and four GPU-accelerated servers — should run about $50,000. That configuration will deliver around 16 (single-precision) teraflops. But larger systems can scale into the 100s of teraflops territory and run $1 million. In this $50K to $1M price range, the systems are aimed at research groups of varying sizes. A low-end 16-GPU machine, for example, could serve a professor and his or her graduate research team, while a 100-GPU system would most likely be shared by multiple research groups spread across an organization.

This reflects how multi-teraflop CPU clusters are used today, but in the case of GPUs, the price point is an order of magnitude lower. NVIDIA’s goal is to make this capability available for the hundreds of thousands of researchers who could potentially use this level of computing, but who can’t afford a CPU-based system or don’t have the power or floor space to accommodate such a machine.

Software will continue to be the limiting factor, since a lot of important technical computing codes are just now being ported to the GPU. CUDA-enabled packages like NAMD (NAnoscale Molecular Dynamics) and GROMACS (GROningen MAchine for Chemical Simulations) are well into development and will soon make their way into commercial systems. In the near future, OpenCL should offer another avenue for porting higher level GPU computing codes. All of this means system builders will increasingly be able to craft turnkey GPU clusters for specific application segments.

If GPU clusters take off, it would be especially welcome news for NVIDIA. Like many chip manufacturers, the company is struggling through the economic downturn. Its revenues declined 16 percent last year, and it recorded its first net loss in a decade. The good news is that in the GPU computing realm, NVIDIA is the clear market leader. And while the company’s HPC offerings are not a volume business, if Tesla GPUs become the accelerator of choice for millions of researchers, that could change.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a pres Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have coalesced into a major headache in advanced HPC system desig Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field an Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This