NVIDIA Shifts GPU Clusters Into Second Gear

By Michael Feldman

May 4, 2009

GPU-accelerated clusters are moving quickly from the “kick the tires” stage into production systems, and NVIDIA has positioned itself as the principal driver for this emerging high performance computing segment.

The company’s Tesla S1070 hardware, along with the CUDA computing environment, are starting to deliver real results for commercial HPC workloads. For example Hess Corporation has a 128-GPU cluster that is performing seismic processing for the company. The 32 S1070s (4 GPUs per board) are paired with dual-socket quad-core CPU servers and are performing at the level of about 2,000 dual-socket CPU servers for some of their workloads. For Hess, that means it can get the same computing horsepower for 1/20 the price and for 1/27 the power consumption.

Hess is not alone. Brazilian oil company Petrobas has built a 72-GPU Tesla cluster for its seismic codes. Although the company hasn’t released specific performance data, based on preliminary testing, Petrobas expects to see a 5X to 20X improvement compared to a CPU-based cluster platform. Chevron and Total SA are also experimenting with GPU acceleration and although they haven’t divulged what types of systems are being used, NVIDIA products are almost certainly in the mix.

BNP Paribas, a French banking firm, is using a Tesla S1070 to compute equity pricing on the derivatives the company tracks. According to Stéphane Tyc, head of the company’s Corporate and Investment Banking Division in the GECD Quantitative Research group, they were able to achieve the same performance as 500 CPU cores with just half a Tesla board (two GPUs). Better yet, the platform delivered a 100-fold increase in computations per watt compared to a CPU-only system. “We were actually surprised to get numbers of that magnitude,” said Tyc. As of March, BNP Paribas had not deployed the system for live trading, but there are already plans in place to port more software.

Up until now, all of these GPU-accelerated clusters had to be custom-built. In an effort to get a more “out of box” experience for GPU cluster users, NVIDIA has launched its “Tesla GPU Preconfigured Cluster” strategy. Essentially, it’s a set of guidelines for OEMs and system builders for NVIDIA-accelerated clusters, the idea being to make GPU clusters as easy to order and install as their CPU-only counterparts. It’s basically a parallel strategy to NVIDIA’s personal supercomputer workstation program, which the company rolled out in November 2008.

The guidelines consist of a set of hardware and software specs that define a basic GPU cluster configuration. In a nutshell, each cluster has a CPU head node that runs the cluster management software, an InfiniBand switch for node-to-node communication, and four or more GPU-accelerated compute nodes. Each compute node has a CPU server hooked up to a Tesla S1070 via PCI Express. On the software side, a system includes clustering software, MPI, and NVIDIA’s CUDA development tools. Most of this is just standard fare, but the cluster software is typically a Rocks roll for CUDA or something equivalent.

NVIDIA itself isn’t building any systems. As the company did with personal supercomputing, it has enlisted partner OEMs and distributors to offer GPU-accelerated clusters. The system vendors can add value by selling their own clustering software, tools, services and hardware options. Currently NVIDIA has signed more than a dozen players, including many of the usual HPC suspects: Cray, Appro, Microway, Penguin Computing, Colfax International, and James River Technical. NVIDIA has also corralled some regional workstation and server distributors to attain a more global reach. In this category we have CADNetwork (Germany), E4 (Italy), T-Platforms (Russia), Netweb Technologies (India), Viglen (UK). The complete list of partners is on NVIDIA’s Web site.

A bare-bones system — a head node and four GPU-accelerated servers — should run about $50,000. That configuration will deliver around 16 (single-precision) teraflops. But larger systems can scale into the 100s of teraflops territory and run $1 million. In this $50K to $1M price range, the systems are aimed at research groups of varying sizes. A low-end 16-GPU machine, for example, could serve a professor and his or her graduate research team, while a 100-GPU system would most likely be shared by multiple research groups spread across an organization.

This reflects how multi-teraflop CPU clusters are used today, but in the case of GPUs, the price point is an order of magnitude lower. NVIDIA’s goal is to make this capability available for the hundreds of thousands of researchers who could potentially use this level of computing, but who can’t afford a CPU-based system or don’t have the power or floor space to accommodate such a machine.

Software will continue to be the limiting factor, since a lot of important technical computing codes are just now being ported to the GPU. CUDA-enabled packages like NAMD (NAnoscale Molecular Dynamics) and GROMACS (GROningen MAchine for Chemical Simulations) are well into development and will soon make their way into commercial systems. In the near future, OpenCL should offer another avenue for porting higher level GPU computing codes. All of this means system builders will increasingly be able to craft turnkey GPU clusters for specific application segments.

If GPU clusters take off, it would be especially welcome news for NVIDIA. Like many chip manufacturers, the company is struggling through the economic downturn. Its revenues declined 16 percent last year, and it recorded its first net loss in a decade. The good news is that in the GPU computing realm, NVIDIA is the clear market leader. And while the company’s HPC offerings are not a volume business, if Tesla GPUs become the accelerator of choice for millions of researchers, that could change.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This