NVIDIA Shifts GPU Clusters Into Second Gear

By Michael Feldman

May 4, 2009

GPU-accelerated clusters are moving quickly from the “kick the tires” stage into production systems, and NVIDIA has positioned itself as the principal driver for this emerging high performance computing segment.

The company’s Tesla S1070 hardware, along with the CUDA computing environment, are starting to deliver real results for commercial HPC workloads. For example Hess Corporation has a 128-GPU cluster that is performing seismic processing for the company. The 32 S1070s (4 GPUs per board) are paired with dual-socket quad-core CPU servers and are performing at the level of about 2,000 dual-socket CPU servers for some of their workloads. For Hess, that means it can get the same computing horsepower for 1/20 the price and for 1/27 the power consumption.

Hess is not alone. Brazilian oil company Petrobas has built a 72-GPU Tesla cluster for its seismic codes. Although the company hasn’t released specific performance data, based on preliminary testing, Petrobas expects to see a 5X to 20X improvement compared to a CPU-based cluster platform. Chevron and Total SA are also experimenting with GPU acceleration and although they haven’t divulged what types of systems are being used, NVIDIA products are almost certainly in the mix.

BNP Paribas, a French banking firm, is using a Tesla S1070 to compute equity pricing on the derivatives the company tracks. According to Stéphane Tyc, head of the company’s Corporate and Investment Banking Division in the GECD Quantitative Research group, they were able to achieve the same performance as 500 CPU cores with just half a Tesla board (two GPUs). Better yet, the platform delivered a 100-fold increase in computations per watt compared to a CPU-only system. “We were actually surprised to get numbers of that magnitude,” said Tyc. As of March, BNP Paribas had not deployed the system for live trading, but there are already plans in place to port more software.

Up until now, all of these GPU-accelerated clusters had to be custom-built. In an effort to get a more “out of box” experience for GPU cluster users, NVIDIA has launched its “Tesla GPU Preconfigured Cluster” strategy. Essentially, it’s a set of guidelines for OEMs and system builders for NVIDIA-accelerated clusters, the idea being to make GPU clusters as easy to order and install as their CPU-only counterparts. It’s basically a parallel strategy to NVIDIA’s personal supercomputer workstation program, which the company rolled out in November 2008.

The guidelines consist of a set of hardware and software specs that define a basic GPU cluster configuration. In a nutshell, each cluster has a CPU head node that runs the cluster management software, an InfiniBand switch for node-to-node communication, and four or more GPU-accelerated compute nodes. Each compute node has a CPU server hooked up to a Tesla S1070 via PCI Express. On the software side, a system includes clustering software, MPI, and NVIDIA’s CUDA development tools. Most of this is just standard fare, but the cluster software is typically a Rocks roll for CUDA or something equivalent.

NVIDIA itself isn’t building any systems. As the company did with personal supercomputing, it has enlisted partner OEMs and distributors to offer GPU-accelerated clusters. The system vendors can add value by selling their own clustering software, tools, services and hardware options. Currently NVIDIA has signed more than a dozen players, including many of the usual HPC suspects: Cray, Appro, Microway, Penguin Computing, Colfax International, and James River Technical. NVIDIA has also corralled some regional workstation and server distributors to attain a more global reach. In this category we have CADNetwork (Germany), E4 (Italy), T-Platforms (Russia), Netweb Technologies (India), Viglen (UK). The complete list of partners is on NVIDIA’s Web site.

A bare-bones system — a head node and four GPU-accelerated servers — should run about $50,000. That configuration will deliver around 16 (single-precision) teraflops. But larger systems can scale into the 100s of teraflops territory and run $1 million. In this $50K to $1M price range, the systems are aimed at research groups of varying sizes. A low-end 16-GPU machine, for example, could serve a professor and his or her graduate research team, while a 100-GPU system would most likely be shared by multiple research groups spread across an organization.

This reflects how multi-teraflop CPU clusters are used today, but in the case of GPUs, the price point is an order of magnitude lower. NVIDIA’s goal is to make this capability available for the hundreds of thousands of researchers who could potentially use this level of computing, but who can’t afford a CPU-based system or don’t have the power or floor space to accommodate such a machine.

Software will continue to be the limiting factor, since a lot of important technical computing codes are just now being ported to the GPU. CUDA-enabled packages like NAMD (NAnoscale Molecular Dynamics) and GROMACS (GROningen MAchine for Chemical Simulations) are well into development and will soon make their way into commercial systems. In the near future, OpenCL should offer another avenue for porting higher level GPU computing codes. All of this means system builders will increasingly be able to craft turnkey GPU clusters for specific application segments.

If GPU clusters take off, it would be especially welcome news for NVIDIA. Like many chip manufacturers, the company is struggling through the economic downturn. Its revenues declined 16 percent last year, and it recorded its first net loss in a decade. The good news is that in the GPU computing realm, NVIDIA is the clear market leader. And while the company’s HPC offerings are not a volume business, if Tesla GPUs become the accelerator of choice for millions of researchers, that could change.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This