French Bank Takes On GPU Computing

By Michael Feldman

May 6, 2009

This week’s launch of NVIDIA’s “Preconfigured GPU Clusters” program, which we covered on Monday, got me to thinking about how far and how fast GPUs have entered the HPC mainstream. To be sure, actual production deployments are not yet commonplace, at least not visibly so. And there’s the rub. Most commercial firms would rather keep their use of cutting-edge technology hidden from competitors. For GPU computing in areas like financial services and oil & gas exploration, this is especially true.

That’s why I was somewhat surprised when Paris-based BNP Paribas, a European banking and financial services company, granted me an audience with Stéphane Tyc, the head of Global Equities & Commodity Derivatives Quantitative Research in the firm’s Corporate and Investment Banking Division. In March the company announced it was using NVIDIA gear and CUDA to speed up some of its pricing models.

Besides being open to talking about the company’s adventures in GPU computing, I got a sense from Tyc that the financial services culture there was rather different from that in the US. For example, Tyc and his group are big advocates of open source and are encouraged to contribute to that effort. “When I have people on my team that want to contribute to free software — that’s great,” he told me. Keep in mind that we’re talking about a commercial organization that has to answer to investors and its financial customers. Although the analytics codes his team develops are all proprietary, they’re willing to devote company time to improving open source tools and libraries.

The analytics software they’ve developed is an advanced version of Black-Scholes used to price hundreds of thousands of equity derivatives. The whole package is around a million lines of source, but the code they ported to CUDA — a minimization procedure used to calibrate the parameters of Monte Carlo simulations — is only one or two percent of the total. According to Tyc though, that single procedure uses about 10 percent of the processor cycles.

Accurate derivative pricing requires a lot of floating point horsepower, so the FP capability of the hardware is directly proportional to how fast it can deliver useful results. Using just two of the four GPUs on an NVIDIA S1070 board, they were able to achieve a 15-fold performance increase and a 100-fold power improvement in performance per watt in this one procedure.

Tyc noted that part of the performance pickup was a result of modifying the algorithm to use single precision floating point. For x86 CPUs, single and double precision operations execute at essentially the same speed, which tends to make a lot of developers lazy about choosing an efficient implementation. But for GPUs, single precision is 5 to 10 times faster, hence the motivation to change the algorithm.

The advantage to all this code noodling is that they can actually do pricing re-fits during the day. With a CPU-only platform, they would set the job to run overnight and collect the data the next day — not an ideal situation for traders.

As of March, the CUDA-ized version of the pricing model hadn’t been deployed for live trading, but Tyc was impressed enough to start thinking about porting more codes and making use of additional GPUs. One challenge for them is that a lot their software is written in Ada. (Apparently in France, style and elegance still count for something, even in software.) If they had used C or Fortran, they could have turned to PGI or CAPS, which offer tools that can transform these high-level languages into GPU code. For the time being, Tyc’s team will probably continue to use the gold digger approach and manually convert the most computationally-intensive source into CUDA.

Longer term, they are looking at OpenCL as a way to get their GPU implementation onto a hardware-independent code base. Although the choices today for GPU computing are limited to NVIDIA and AMD(ATI), Intel is planning to launch its first GPU-like Larrabee chips within a year, and all three vendors are likely to offer OpenCL support. At that point platform independence could look much more attractive than it does today. As pleased as Tyc is about the early results from the NVIDIA solution, he said they would rather not be tied to a specific vendor and will certainly take a hard look at Larrabee when it shows up.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This