Examining the International Computational Ecosystem

By John E. West

May 7, 2009

At the end of April, the World Technology Evaluation Center (WTEC) released its latest report, the International Assessment of Research and Development in Simulation-Based Engineering and Science (SBE&S). The report was commissioned in 2007, and funded by funded by the National Science Foundation, the Department of Defense, the National Aeronautics and Space Administration, the National Institutes of Health, the National Institute of Standards and Technology, and the Department of Energy. The final product is 400 pages long, but don’t worry: all but about 130 pages of that is appendix. The full report [PDF] is available for download from the WTEC site.

The report is unreserved in its endorsement of the power of computing to make the world a better place: “No field of science or engineering exists that has not been advanced by, and in some cases transformed by, computer simulation.” From this perspective the authors and study sponsors set upon a research effort to figure out how key elements of the computational infrastructure are shaping up, what needs to be done to kick start lagging elements, and how the US compares to the rest of the world.

This last bit rings throughout the report, and frankly I found it distracting. I’ll say up front that I understand that the emphasis on US competitiveness is the practical result of the study sponsors needing to influence lawmakers to increase their budgets. And this will probably work, and the result will be a Good Thing. But the report’s emphasis leans more toward the position that lack of US leadership in every area of computational science is undesirable on its face. This view rings hollow in its extreme. I would much rather have seen the report, and the country for that matter, focus on doing the right thing for the development of a robust computational ecosystem, secure in the knowledge that competitive advantage flows naturally and sustainably from a long-term commitment to technical excellence coupled with a strong strategic vision. You don’t become world class by setting out to be world class solely for the sake of being world class. But enough of that.

The report looks at the status and trends in research in simulation-based engineering and science (SBE&S) throughout the US, Europe, and Asia (predominantly Japan and China).

A panel of experts reviewed and assessed the state of the art as well as levels of activity overseas in the broad thematic areas of SBE&S in life sciences and medicine, materials, in energy and sustainability; and in the crosscutting issues of next generation hardware and algorithms; software development; engineering simulations; validation, verification, and uncertainty quantification; multiscale modeling and simulation; and education.

The panel held a US workshop and then visited 59 sites in Europe and Asia, studied the literature, and read a whole pile of research reports to get a handle on the various types of activities being pursued. The study highlights findings in each of the three thematic areas and then in the crosscutting areas. I’ll focus on the crosscutting areas, since these are the meat and potatoes of high end technical computing.

Generally speaking, the panel noted that the cost of entry is very low for SBE&S, and that because “anyone can do it,” the spoils will go to those who can do it more effectively before anyone else. They also join the legion of blue ribbon reports to note that computational education everywhere is, er, let’s just say inadequate:

Inadequate education and training of the next generation of computational scientists threatens global as well as U.S. growth of SBE&S…. Nearly universally, the panel found concern that students use codes primarily as black boxes, with only a very small fraction of students learning proper algorithm and software development, in particular with an eye towards open-source or community code development.

They also reiterate the assertion that SBE&S funding in the US is too low with respect to massive commitments in Europe and Asia that are already beginning to bear fruit. For example:

In Germany, specific and focused investments in SBE&S are patterned along the recommendations in the 2006 NSF blue ribbon panel report on SBES (Oden 2006) as part of the 20+% year-on-year increase in funding for research. As a consequence of this new funding, Germany already exhibits many of the innovative organizational and collaborative structures deemed to be the most promising for advancing SBE&S in the context of energy, medicine, and materials research. The panel observed extensive restructuring of universities to enable more interdisciplinary work and strong university-industry partnerships.

Throughout the report the panel criticizes the US short-term funding emphasis, the lack of strategic commitment, and our cultural “go it alone” attitude as determinants of perpetual weakness in our computational infrastructure.

For example, the panel found that community code development projects are much stronger within the European Union than the United States, with national strategies and long-term support. Many times the panel was told that the United States is an “unreliable partner” in these efforts due to our inability to commit for longer than typically three years at a time. Both this perception and the reality means that the United States has little influence over the direction of these community codes and at the same time is not developing large codes of its own.

And there is this gem, aimed at materials science efforts in the US, but applicable to HPC in general:

Many large codes, both open source and non-open source, require collaboration among large groups of domain scientists, applied mathematicians, and computational scientists. However, there is much greater collaboration among groups in materials code development in Europe compared to the United States. There appear to be several reasons for this:

  • The U.S. tenure process and academic rewards systems suppress collaboration.
  • Funding, promotion, and awards favor high-impact science (publications in Nature and Science, for example), while the development of simulation tools is not considered to be high-impact science. Yet, these tools (which can take many years to develop) are often the key factor in enabling the high-impact science.

But what about HPC in specific, you ask? The panel re-emphasizes the observations of many other panel reports in pointing out the value of coordinated, national-scale investments in computational infrastructure:

The many orders-of-magnitude in speedup required to make significant progress in many disciplines will come from a combination of synergistic advances in hardware, algorithms, and software, and thus investment and progress in one will not pay off without concomitant investments in the other two.

The authors observe that there are healthy investments throughout Europe, Asia, and the US aimed at developing and sustaining high end computing hardware, but stops short of endorsing them at currently-funded levels. Interestingly, the report also acknowledges that simulation-based engineering and science software thrives on a continuum of hardware, from supercomputers to desktops, and that tools, frameworks and computing platforms need to be provisioned that recognize and support this need. This is not often discussed, but rings true in my own experiences supporting a large, diverse user community.

Immature tools and the higgeldy-piggeldy nature of the HPC workflow in general are called out as presenting substantial hurdles to more effective use of SBE&S.

Software and data interoperability, visualization, and algorithms that outlast hardware obstruct more effective use of engineering simulation…. In most engineering applications, algorithms, software and data/visualization are primary bottlenecks. Computational resources (flops and bytes) were not limiting factors at most sites. Lifecycle of algorithms is in the 10-20 years range, whereas hardware lifecycle is in the 2-3 years range. Visualization of simulation outputs remains a challenge and HPC and high-bandwidth networks have exacerbated the problem. (Emphasis added)

In particular, investments in data workflow and large-scale visualization are found by the report to be unevenly distributed, with the particle physics and biological sciences communities leading the way, and chemical and material science communities bringing up the rear. In part, the leading communities are ahead because they haven’t been allowed to simply limp along with the way they’ve always done it: regulatory requirements (in biological science) and the sheer volume of data have forced investment and innovation. The other communities are still largely trading off the immediate waste of researcher time against the longer-term investment in a supporting data infrastructure that would ultimately accelerate the pace of innovation and discovery. In other words they are buying more flops now and sacrificing more discovery later. But, the report finds:

Industry is significantly ahead of academia with respect to data management infrastructure, supply chain, and workflow.

The report also finds that visualization and data analysis are completely essential to solving our society’s most important problems, directly addressing the disturbing trend in some large-scale national HPC programs to de-emphasize funding for visualization, and to paint its contribution as “pretty pictures”:

Big data, visualization and dynamic data-driven simulations are crucial technology elements in numerous “grand challenges,” including the production of transportation fuels from the last remaining giant oil fields.

Finally, the panel’s report highlights a huge hole in the global computational ecosystem: the lack of proper emphasis on verification and validation and uncertainty quantification.

A report on European computational science (ESF 2007) concludes that “without validation, computational data are not credible, and hence, are useless.”…The data and other information the WTEC panel collected in its study suggests that there are a lot of “simulation-meets-experiment” types of projects but no systematic effort to establish the rigor and the requirements on UQ and V&V that the cited reports have suggested are needed.

There are a few exceptions that are called out by the panel — for example in the work of SciDAC and the DOD Defense Modeling and Simulation Office, and theoretical work in Germany, Switzerland, and Austria — but these efforts are characterized as limited in scope and impact with respect to the size of the problem that needs to ultimately be addressed. Clearly, more understanding of the limits of the answers our computers are giving us is needed. This is especially important as we rely on them increasingly for answers about questions related to our own health and safety, and the welfare of our entire planet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This