Examining the International Computational Ecosystem

By John E. West

May 7, 2009

At the end of April, the World Technology Evaluation Center (WTEC) released its latest report, the International Assessment of Research and Development in Simulation-Based Engineering and Science (SBE&S). The report was commissioned in 2007, and funded by funded by the National Science Foundation, the Department of Defense, the National Aeronautics and Space Administration, the National Institutes of Health, the National Institute of Standards and Technology, and the Department of Energy. The final product is 400 pages long, but don’t worry: all but about 130 pages of that is appendix. The full report [PDF] is available for download from the WTEC site.

The report is unreserved in its endorsement of the power of computing to make the world a better place: “No field of science or engineering exists that has not been advanced by, and in some cases transformed by, computer simulation.” From this perspective the authors and study sponsors set upon a research effort to figure out how key elements of the computational infrastructure are shaping up, what needs to be done to kick start lagging elements, and how the US compares to the rest of the world.

This last bit rings throughout the report, and frankly I found it distracting. I’ll say up front that I understand that the emphasis on US competitiveness is the practical result of the study sponsors needing to influence lawmakers to increase their budgets. And this will probably work, and the result will be a Good Thing. But the report’s emphasis leans more toward the position that lack of US leadership in every area of computational science is undesirable on its face. This view rings hollow in its extreme. I would much rather have seen the report, and the country for that matter, focus on doing the right thing for the development of a robust computational ecosystem, secure in the knowledge that competitive advantage flows naturally and sustainably from a long-term commitment to technical excellence coupled with a strong strategic vision. You don’t become world class by setting out to be world class solely for the sake of being world class. But enough of that.

The report looks at the status and trends in research in simulation-based engineering and science (SBE&S) throughout the US, Europe, and Asia (predominantly Japan and China).

A panel of experts reviewed and assessed the state of the art as well as levels of activity overseas in the broad thematic areas of SBE&S in life sciences and medicine, materials, in energy and sustainability; and in the crosscutting issues of next generation hardware and algorithms; software development; engineering simulations; validation, verification, and uncertainty quantification; multiscale modeling and simulation; and education.

The panel held a US workshop and then visited 59 sites in Europe and Asia, studied the literature, and read a whole pile of research reports to get a handle on the various types of activities being pursued. The study highlights findings in each of the three thematic areas and then in the crosscutting areas. I’ll focus on the crosscutting areas, since these are the meat and potatoes of high end technical computing.

Generally speaking, the panel noted that the cost of entry is very low for SBE&S, and that because “anyone can do it,” the spoils will go to those who can do it more effectively before anyone else. They also join the legion of blue ribbon reports to note that computational education everywhere is, er, let’s just say inadequate:

Inadequate education and training of the next generation of computational scientists threatens global as well as U.S. growth of SBE&S…. Nearly universally, the panel found concern that students use codes primarily as black boxes, with only a very small fraction of students learning proper algorithm and software development, in particular with an eye towards open-source or community code development.

They also reiterate the assertion that SBE&S funding in the US is too low with respect to massive commitments in Europe and Asia that are already beginning to bear fruit. For example:

In Germany, specific and focused investments in SBE&S are patterned along the recommendations in the 2006 NSF blue ribbon panel report on SBES (Oden 2006) as part of the 20+% year-on-year increase in funding for research. As a consequence of this new funding, Germany already exhibits many of the innovative organizational and collaborative structures deemed to be the most promising for advancing SBE&S in the context of energy, medicine, and materials research. The panel observed extensive restructuring of universities to enable more interdisciplinary work and strong university-industry partnerships.

Throughout the report the panel criticizes the US short-term funding emphasis, the lack of strategic commitment, and our cultural “go it alone” attitude as determinants of perpetual weakness in our computational infrastructure.

For example, the panel found that community code development projects are much stronger within the European Union than the United States, with national strategies and long-term support. Many times the panel was told that the United States is an “unreliable partner” in these efforts due to our inability to commit for longer than typically three years at a time. Both this perception and the reality means that the United States has little influence over the direction of these community codes and at the same time is not developing large codes of its own.

And there is this gem, aimed at materials science efforts in the US, but applicable to HPC in general:

Many large codes, both open source and non-open source, require collaboration among large groups of domain scientists, applied mathematicians, and computational scientists. However, there is much greater collaboration among groups in materials code development in Europe compared to the United States. There appear to be several reasons for this:

  • The U.S. tenure process and academic rewards systems suppress collaboration.
  • Funding, promotion, and awards favor high-impact science (publications in Nature and Science, for example), while the development of simulation tools is not considered to be high-impact science. Yet, these tools (which can take many years to develop) are often the key factor in enabling the high-impact science.

But what about HPC in specific, you ask? The panel re-emphasizes the observations of many other panel reports in pointing out the value of coordinated, national-scale investments in computational infrastructure:

The many orders-of-magnitude in speedup required to make significant progress in many disciplines will come from a combination of synergistic advances in hardware, algorithms, and software, and thus investment and progress in one will not pay off without concomitant investments in the other two.

The authors observe that there are healthy investments throughout Europe, Asia, and the US aimed at developing and sustaining high end computing hardware, but stops short of endorsing them at currently-funded levels. Interestingly, the report also acknowledges that simulation-based engineering and science software thrives on a continuum of hardware, from supercomputers to desktops, and that tools, frameworks and computing platforms need to be provisioned that recognize and support this need. This is not often discussed, but rings true in my own experiences supporting a large, diverse user community.

Immature tools and the higgeldy-piggeldy nature of the HPC workflow in general are called out as presenting substantial hurdles to more effective use of SBE&S.

Software and data interoperability, visualization, and algorithms that outlast hardware obstruct more effective use of engineering simulation…. In most engineering applications, algorithms, software and data/visualization are primary bottlenecks. Computational resources (flops and bytes) were not limiting factors at most sites. Lifecycle of algorithms is in the 10-20 years range, whereas hardware lifecycle is in the 2-3 years range. Visualization of simulation outputs remains a challenge and HPC and high-bandwidth networks have exacerbated the problem. (Emphasis added)

In particular, investments in data workflow and large-scale visualization are found by the report to be unevenly distributed, with the particle physics and biological sciences communities leading the way, and chemical and material science communities bringing up the rear. In part, the leading communities are ahead because they haven’t been allowed to simply limp along with the way they’ve always done it: regulatory requirements (in biological science) and the sheer volume of data have forced investment and innovation. The other communities are still largely trading off the immediate waste of researcher time against the longer-term investment in a supporting data infrastructure that would ultimately accelerate the pace of innovation and discovery. In other words they are buying more flops now and sacrificing more discovery later. But, the report finds:

Industry is significantly ahead of academia with respect to data management infrastructure, supply chain, and workflow.

The report also finds that visualization and data analysis are completely essential to solving our society’s most important problems, directly addressing the disturbing trend in some large-scale national HPC programs to de-emphasize funding for visualization, and to paint its contribution as “pretty pictures”:

Big data, visualization and dynamic data-driven simulations are crucial technology elements in numerous “grand challenges,” including the production of transportation fuels from the last remaining giant oil fields.

Finally, the panel’s report highlights a huge hole in the global computational ecosystem: the lack of proper emphasis on verification and validation and uncertainty quantification.

A report on European computational science (ESF 2007) concludes that “without validation, computational data are not credible, and hence, are useless.”…The data and other information the WTEC panel collected in its study suggests that there are a lot of “simulation-meets-experiment” types of projects but no systematic effort to establish the rigor and the requirements on UQ and V&V that the cited reports have suggested are needed.

There are a few exceptions that are called out by the panel — for example in the work of SciDAC and the DOD Defense Modeling and Simulation Office, and theoretical work in Germany, Switzerland, and Austria — but these efforts are characterized as limited in scope and impact with respect to the size of the problem that needs to ultimately be addressed. Clearly, more understanding of the limits of the answers our computers are giving us is needed. This is especially important as we rely on them increasingly for answers about questions related to our own health and safety, and the welfare of our entire planet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This