Simulation Angst

By Michael Feldman

May 7, 2009

The World Technology Evaluation Center (WTEC) recently released a study [big PDF] that assessed international research and development in simulation-based engineering and science (SBE&S). SBE&S encompasses computer modeling and simulation capabilities, which applies to HPC applications in such areas as life science, energy, materials science, manufacturing and scientific research. Intrepid HPCwire reporter John West covers the major findings of the study in this week’s issue.

The WTEC panel obviously did a lot of research for the study (the report was a whopping 426 pages), but the US-centric agenda of the National Science Foundation, who funded the report, came through loud and clear.

The WTEC report starts with this quote by Harry Truman from 1950:

We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep abreast of the rest of the world in scientific matters. We must maintain our leadership.

And for the most part, we did. But in the 21st century, maintaining this leadership is going to be a lot trickier.

In a nutshell, the WTEC report says that America, while still strong in computer simulation technologies, is losing ground to Europe and Asia. According to the authors, countries like Germany, Japan and China are, in many cases, out-investing us in SBE&S technologies. According to the study: “There is abundant evidence and numerous reports documenting that our nation is at risk of losing its competitive edge. Our continued capability as a nation to lead in simulation-based discovery and innovation is key to our ability to compete in the 21st century.”

These conclusions are along the same lines as similar studies, most notably the 2005 National Academies report, Rising Above the Gathering Storm. The WTEC study points to the flattening of the HPC computing landscape as a primary reason US leadership in simulation technology is eroding. In particular, the low cost and accessibility of supercomputing technology makes it possible for nations of fairly modest means to challenge American preeminence in simulation software.

But as I perused the report, I found myself wondering about some of the unstated assumptions of the study. In particular, if the world is flat with regard to supercomputing hardware, surely simulation codes and expertise are just as globally accessible. The authors act as if software and programmers have no way to cross national borders. To be fair, the study does point to some specific instances where, for political reasons, the US Department of Defense is prevented access to certain codes developed elsewhere. But the study doesn’t make a general case of how a national commitment to SBE&S would contribute to US competitiveness.

In a flat world, even the term “US competitiveness” is ambiguous. In a globalized economy, it’s hard to find head-to-head competition at the national level, since most industries rely on worldwide supply chains, employees and infrastructure. There is a reasonable case to made about how investing in SBE&S would help US tech workers, since centers of excellence based on specific technologies can certainly stimulate local economies. But the study never connects the dots.

In some cases there are no dots to connect. Today most businesses that provide SBE&S-related hardware, software and services are transnational organizations. Moreover, the firms that use these technologies — biotech companies, financial services firms, aerospace manufacturers and such — build and sell products for an international marketplace and often have a global footprint themselves.

The WTEC study points to companies like Toyota and Airbus as firms that are committed to simulation engineering excellence. But Toyota is itself heavily invested in the US, including a $100 million research institute in Ann Arbor, Michigan. And Airbus claims it spends more money with US suppliers than in any other country, supporting an estimated 190,000 jobs in 40 states. Likewise, US-based companies like IBM maintain research facilities in Switzerland and Germany to take advantage of local expertise and infrastructure. In that sense, it could be argued that American leadership in foundational simulation software is not nearly as important to US-based businesses as being able to tap into global talent and investments.

Despite the study’s shortcomings, the authors come up with some reasonable suggestions: a strategic commitment to SBE&S, increased funding and more industry-government partnerships. The US should at least be pulling its weight in research and development of these technologies, and public sector areas like defense are always going to require some special attention.

Unfortunately, the us-versus-them bias of the study prevented the WTEC authors from making another important recommendation: the US should engage in and encourage international partnerships to help push SBE&S forward. The study did point out that developing capable simulation/modeling software and expertise is a worldwide problem, given the rapid transition to highly parallel computing architectures. So it seems natural that international cooperation could be a good thing.

The big challenges of the 21st century — climate change, energy, health care, and terrorism — are all global problems whose technical solutions involve simulation software and engineering to one degree or another. At a time when global warming and fossil fuel shortages affect the entire planet, it’s hard to imagine a single country could sustain a competitive advantage if it solved, say, fusion energy. The same goes for discoveries that address problems like disease control or nuclear proliferation.

Truman’s remarks about US science more than 50 years ago came in the Cold War era when it really was us versus them. And back then home-grown technology and engineering could be more easily contained within national borders. But the world we’ve inherited makes the America-must-be-number-one approach a lot more questionable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This