Biotech HPC in the Cloud

By Michael Feldman

June 4, 2009

Hardly a week goes by now where some big IT company isn’t announcing a new cloud computing platform. Jumping into clouds seems metaphorically questionable, but a lot of IT firms see large-scale utility computing as the next big thing in computing, and they don’t want to be left out. Most recently hopping onto the bandwagon are Verizon, Computer Sciences Corp., and Sun Microsystems — its second foray into on-demand computing.

Those three companies add to a growing list of cloud providers, including Google, Microsoft, IBM, HP, AT&T, and dozens of smaller players. But HPC users seem to be gravitating toward the 800-pound gorilla in the room — Amazon and its Elastic Compute Cloud (EC2) offering. Even though EC2 has only been around for three years, it represents the oldest and most established general-purpose cloud computing platform.

In particular, EC2 looks like it’s becoming the platform of choice for biotech companies. Our February report on startup Pathwork Diagnostics is an example of a small company using EC2 to offload a cancer tissue analytics application. They cited Amazon’s $0.10/CPU-hour cost as the main attraction for outsourcing some of their work. Larger biotech companies are using EC2 as well. An article last week in Chemical & Engineering News by Rick Mullin described how a handful of big pharmaceutical firms are tapping into clouds. Pfizer, Eli Lilly & Co., Johnson & Johnson and Genentech are all looking to offload some of their bioinformatics work onto the cloud. From Mullin’s article:

Although Lilly has a sizable installed base of computers, the company’s IT infrastructure is operating at full capacity, says Andrew Kaczorek, senior systems analyst for discovery IT. “Because we have hundreds of different users, what we see is spiky utilization,” Kaczorek says. “The result is that for days at a time our clusters are at 100% of capacity. This means there are actually scientists who have work to be done that is literally sitting in a queue.” Although exact cost savings are difficult to calculate, they are clearly significant, according to Powers and Kaczorek, as are the time savings.

For example, the company was able to rent CPU cycles on EC2 to run a bioinformatics sequencing code on a 64-node EC2 cluster. For a 20 minute run, the cost to Eli Lilly was $6.40. That’s hard to beat when compared to the price of maintaining those additional 64 compute nodes on a permanent basis.

For bioscience businesses, the cloud story is especially compelling. Unlike other traditional HPC users like government labs, financial services firms, and oil & gas companies, life sciences came relatively late to the information technology game, so computing know-how and infrastructure at these companies tend to be spread rather thinly (at least relative to, say, a DOE lab). But today biotech companies are fully immersed in and dependent upon information technology, especially high performance computing. Mullin continues:

[T]he rapid creation of life sciences data keeps pointing to the use of cloud computing, and this is especially true in the area of genomics research. Advances in nanoscale and microfluidic chemistry now allow DNA to be monitored on tiny beads by photographic sensors that, according to Chris Dagdigian, principal consultant for the BioTeam, generate TIFF images in collections of up to 800 gigabytes. “This creates a massive data-capture and handling problem,” he says. “We are now in an era where instruments that are showing up in very small wet laboratories are capable of producing a terabyte or more of data in a day.”

It’s conceivable that the drug companies will bypass the large-scale datacenter build-out that occurred in other HPC verticals and move directly to an on-demand computing model. As such, it may serve as a model for how other HPC users, especially smaller organizations and new users with little high-end computing expertise, can get cloud-enabled.

The early experiences by these drug firms also point to how security concerns are holding back more widespread use of cloud computing. In this case, their main concern is protecting their intellectual property and patents, but almost all HPC users (not to mention just everyday enterprise users) have security issues of one sort or another. It’s worth noting here that Verizon’s new cloud platform offers added security, primary because their cloud runs over their own private network. But they also offer additional security in the form of identity and access management, host intrusion detection, application vulnerability assessment, network application assessment and professional security services. It’s not too hard to imagine that computing in the cloud can be made at least as secure as it is behind a local firewall.

For the HPC crowd, the longer term concern is performance. For a good synopsis of this topic take a look at Douglas Eadline’s recent article in Linux Magazine and the EC2 benchmarking paper (PDF) he references. The main argument put forth is that running applications directly on top of purpose-built HPC machines is always going to be more efficient than running applications through a bunch of cloud layers on general-purpose platforms. My take on this is that focusing on performance and computing efficiency ignores the more useful (but more slippery) concept of productivity. I’ve yet to see a research paper look at HPC in the cloud from this perspective.

There are some early attempts to marry cloud computing services with traditional HPC infrastructure. Darkstrand, Nimbus Services, R Systems, Univa UD, and a handful of other companies are on the leading edge of HPC-as-a-service that bring real supercomputers into the mix. Wolfram Research is also developing its own HPC Cloud Service in partnership with Nimbus and R Systems. Whether HPC will be able to carve out its own niche in cloud computing is an open question, but a deeper discussion of this will have to wait until another day.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This