Rumors of NVIDIA’s Next GPU

By Michael Feldman

June 11, 2009

NVIDIA’s next-generation GPU design, the G300, may turn out to be the biggest architectural leap the graphics chip maker has ever attempted. If the early rumors are true, NVIDIA has decided move the architecture a step closer to the CPU and make GPU computing even more compelling for HPC.

Publicly, the company has been tight-lipped on what the upcoming architecture will look like, but that doesn’t prevent GPU-obsessed journalists from speculating. Some of this speculation may be based on wishful thinking, but it looks like there may be a few loose-lipped NVIDIANs out there giving us a reasonably accurate peek at the silicon. It’s also likely that sources at Taiwan Semiconductor Manufacturing Company (TSMC), NVIDIA’s GPU manufacturing partner, are also feeding the rumor mill.

By the way, the G300 is often referred to as the GT300, but the latter refers only to the high-end Tesla version of the architecture, the one the supercomputing crowd would be most interested in. (Hat tip to Rick Hodgin at geek.com for clearing that up.) For our purposes, I’ll just refer to it as the GT300 since HPC users are going to be mostly interested in the top-of-the-line parts anyway.

What follows is speculation heaped on top of speculation, so be warned that none of this may be true. But it makes for fun reading.

Back in April, Theo Valich in Bright Side of News reported that the new GT300 is going to have a lot more power and flexibility than the current crop of GPUs. Writes Valich:

GT300 isn’t the architecture that was envisioned by nVidia’s Chief Architect, former Stanford professor Bill Dally, but this architecture will give you a pretty good idea why Bill told Intel to take a hike when the larger chip giant from Santa Clara offered him a job on the Larrabee project.

According to Valich’s sources, the GT300 will offer up to 512 cores, up from 240 cores in NVIDIA’s current high-end GPU. Since the new chips will be on the 40nm process node, NVIDIA could also crank up the clock. The current Tesla GPUs are running at 1.3-1.4 GHz and deliver about 1 teraflop, single precision, and less than 100 gigaflops, double precision. Valich speculates that a 2 GHz clock could up that to 3 teraflops of single precision performance, and, because of other architectural changes, double precision performance would get an even larger boost.

In a later post Valich writes that the upcoming GPU will sport a 512-bit interface connected to GDDR5 memory. If true he says, “we are looking at memory bandwidth of 256GB/s per single GPU.”

More importantly though, NVIDIA is said to be moving from the traditional SIMD (single instruction, multiple data) GPU computing model to MIMD (multiple instruction, multiple data) or at least MIMD-like. As the name suggests, MIMD means you can run different instruction streams on different processing units in parallel. It offers a much more flexible way of doing all sorts of vector computing, and is a standard way to do technical programming on SMP machines and clusters. Presumably CUDA will incorporate MIMD extensions to support the new hardware. MIMD also happens to be architecture supported by Intel’s upcoming Larrabee chip.

In fact, both the GT300 and Larrabee may end up dropping into the market at the same time — sometime in the first half of 2010. But, as I’ve reported before, Intel has said it is not targeting the HPC market with Larrabee, at least not for next year. NVIDIA, on the other hand, will almost certainly be pushing GT300 silicon into its HPC Tesla products as soon as possible.

There was some speculation that the GT300 would hit the streets this year, but reports of trouble with TSMC’s 40nm manufacturing technology may have slowed NVIDIA’s plans. Also keep in mind that the new architecture has to drag along a growing list of programming standards — CUDA, DirectX 11, OpenGL 3.1 and OpenCL — so getting the new chips to satisfy everyone is no small feat.

If the speculation about the GT300 is basically true, NVIDIA will significantly expand its commitment to the GPU computing market. The Inquirer’s NVIDIA curmudgeon, Charlie Demerjian, thinks too much so. He writes:

Rather than go lean and mean for GT300, possibly with a multi-die strategy like ATI, Nvidia is going for bigger and less areally efficient. They are giving up GPU performance to chase a market that doesn’t exist, but was a nice fantasy three years ago.

Demerjian’s rant on the GT300 is slanted toward his focus on traditional graphics apps and his obvious antipathy toward NVIDIA, but the point he makes about NVIDIA’s devotion to GPU computing is valid enough.

Let’s face it, if Intel fails to connect with Larrabee, the company will just write it off and keep selling its gazillion other flavors of x86. AMD has a more conservative GPU computing strategy, so it has less to lose if the market fizzles. NVIDIA is the one that has really stuck its neck out. The GT300 just sticks it out a little further.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This