The End of Moore’s Law in Five Years?

By Michael Feldman

June 17, 2009

The era of the ever-shrinking transistors may be coming to a end. According to market research and consulting firm iSuppli, Moore’s Law is going to run out of money before it runs out of technology. If true, this would be bad news indeed for the IT-industrial complex, since semiconductor components (CPUs, GPUs, memory devices, etc.) depend on Moore’s Law for their roadmaps, and many businesses directly or indirectly count on the ensuing technological advancements to drive revenue growth and worker productivity.

Moore’s Law, of course, is the observation that the density of transistors on computer chips doubles approximately every two years. Intel co-founder Gordon Moore originally described the trend in a 1965 paper, at a time when transistor densities were actually doubling ever year. More importantly though, Moore observed that the cost per transistor decreased in concert with the shrinking geometries. And it is really this aspect of the model that is breaking.

In fact, it has been apparent for some time that the Moore’s Law curve is running counter to the escalating costs of semiconductor manufacturing, which are rising exponentially as process technology shrinks. This is the result of the increased cost of R&D, testing, and the construction of semiconductor fabrication facilities.

The price tag on a new 45nm fab is over a billion dollars today. AMD’s new foundry partner, Globalfoundries, is constructing a 32nm fab in New York with a budget of $4.2 billion, and Intel has already committed $7 billion to upgrade its fabs to produce 32nm chips. You have to sell a lot of chips to recoup those kinds of costs. And those are just capital expenditures.

In the iSuppli announcement, Len Jelinek, the firm’s director and chief analyst for semiconductor manufacturing, explained it thusly:

“The usable limit for semiconductor process technology will be reached when chip process geometries shrink to be smaller than 20 nanometers (nm), to 18nm nodes. At those nodes, the industry will start getting to the point where semiconductor manufacturing tools are too expensive to depreciate with volume production, i.e., their costs will be so high, that the value of their lifetime productivity can never justify it.”

The operative word is “never.” The iSuppli study predicted that in 2014, when the 18nm and 20nm process nodes are introduced, there will be no economic incentive to build volume semiconductor components below those geometries.

If true, this will tend to level the playing field for semiconductor vendors and especially fabless chip companies. For example, Intel would lose its current chip manufacturing advantage if everyone was stuck on the same process node. More importantly, if transistor size becomes a constant, much more of the burden of computer advancement will be shifted onto other elements of the ecosystem, mainly the folks that do design — chip/device, board, system, and even software.

There would also be increased pressure to abandon legacy architectures in favor of more efficient designs that need proportionally less silicon to do comparable work. Products based on x86 processors and Ethernet networks have been able to advance partly thanks to the ever-shrinking semiconductor components upon which they are based. Without that crutch, more advanced processor designs and interconnects may come to the fore.

To a certain extent, this is already occurring in the high performance computing sector. Moore’s Law is already too slow to keep up with the performance demand of HPC users, and the difference is being made up by aggregating more chips together and attaching accelerators like GPUs, Cell processors and FPGAs. That’s why interconnect technologies have become so important in HPC, which has largely abandoned Ethernet in favor of InfiniBand, and why x86 chips are playing a supporting role on some supercomputers, like the Roadrunner machine at Los Alamos National Lab and the TSUBAME super at Tokyo Tech. I imagine if Moore’s Law comes to a halt or even slows down, non-legacy architectures will become more commonplace in HPC and even generally throughout the ecosystem.

Of course, none of this may come to pass. Moore’s Law is periodically declared dead and has thus far defied its doomsayers. Additional transistor density may be achieved in other ways, such as 3D semiconductor structures. And there’s no shortage of more exotic approaches like carbon nanotubes, silicon nanowires, molecular crossbars, and spintronics. In any case, whatever happens in 2014, we’re bound to be living in interesting times.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This