An Interview with ISC’09 Keynote Speaker Andy von Bechtolsheim

By Nicole Hemsoth

June 21, 2009

When 1,500 leading members of the world’s high performance computing community convene June 23-26 at the 2009 International Supercomputing Conference, The opening keynote address will be presented by Andreas “Andy” von Bechtolsheim, the legendary co-founder of Sun Microsystems and founder and Chief Development Officer of Arista Networks. Von Bechtolsheim will discuss “The Evolution of Interconnects for High Performance Computing.”

ISC, which will be held in Hamburg for the first time in the 24-year history of the conference, has a well-established reputation for presenting well-founded, precise and up-to-date information in an environment that encourages informal conversations and sharing of ideas. And of all the thought-provoking sessions scheduled for ISC’09, none are likely to spark more discussion than the keynote addresses.

In his presentation, von Bechtolsheim will discuss trends in the high performance computation market, including the challenge of building large fabrics and the role of InfiniBand and 10 Gigabit Ethernet. He will also look at how to address the challenges of building, integrating, and using petascale systems including system power and cooling, system stability, and scalablity. Finally, he will look at the impact of solid state memory for HPC deployments and how it can address data bandwidth within the system to deliver improved overall performance through a more balanced system architecture.

Andy Bechtolsheim, Arista Networks Co-Founder Von Bechtolsheim was a co-founder and Chief System Architect at Sun Microsystems, responsible for next generation server, storage, and network architectures. From 1995-96, he was CEO and President of Granite Systems, a Gigabit Ethernet Switching startup company he founded that Cisco acquired in September 1996. From 1996 to 2003, he was VP Engineering and later General Manager for the Gigabit Systems Business Unit at Cisco System that developed the Catalyst 4000/4500 Gigabit Switch family, the highest volume modular switching platform in the industry.

Von Bechtolsheim earned a M.S. in Computer Engineering from Carnegie Mellon University in 1976. He was a doctoral student in Computer Science and Electrical Engineering at Stanford University from 1977-82. He has been honored with a Fulbright scholarship, a German National Merit Foundation scholarship, the Stanford Entrepreneur Company of the year award, the Smithsonian Leadership Award for Innovation, and is a member of the National Academy of Engineering.

The following interview with von Bechtolsheim by Christoph Poeppe from “Spektrum der Wissenschaft” (the German sister publication of Scientific American) was translated by Jon Bashor and Heike Walther.

Spektrum der Wissenschaft: What drives a person, who was apparently meant to pursue a scientific career, to take a path that leads him to such exceptional commercial success? What went wrong?

Bechtolsheim: I don’t see any fundamental conflict between science and commercial success, at least not where I work — in Silicon Valley. All in all, though, I have always been much less interested in academic research and much more interested in how to build better products that drive a commercial success.

Spektrum der Wissenschaft: But didn’t you start out as a physicist?

Bechtolsheim: Not really. In 1974, I did win the German Science Fair in Physics building a device that could precisely measure flows using ultrasound, and in high school I took advanced classes in physics and bio- chemistry, because these were the most interesting classes that were offered. But I was always much more interested in computers and computer science, which is really an engineering discipline. There have been very few major breakthroughs in mathematics and theory in the last twenty-five years that affected the field of computer science. All the new advances that we have seen were really based on better engineering.

Innovation in the computer field is very different than innovating in a traditional industry such as chemistry. At the moment, “Green Energy” is a big focus for venture capitalists. But to make ethanol at a lower cost, you need an unbelievably large amount of investment capital to build new facility, and this is difficult to come by these days.

In information technology, many of the most successful new companies were started with very modest capital. For example Google, which has become the most successful search company, was financed with just 30 million dollars of venture capital.

And Google has been branching out to offer all kinds of new services and applications.

Spektrum der Wissenschaft: I’m really only familiar with Google as a search engine…

Bechtolsheim: Besides the Google search engine, there is also Google Maps and Google Apps and Google Talk and the YouTube video portal – the possibilities stretch out from there. The end user just needs a browser and an Internet connection to use all these services. The computer work is done inside Google’s gigantic data centers, where with clever engineering and large scale, Google has achieved enormous cost advantages compared to conventional data centers.

Spektrum der Wissenschaft: How so?

Bechtolsheim: Google has built a reliable system environment out of a large number of simple, low-cost servers. Google builds its datacenters in locations that have low-cost power and cooling, and it manages these data center with very few people. It is estimated that the cost per CPU hour in a Google datacenter is between one-fifth to one-tenth of a traditional enterprise data center.

Spektrum der Wissenschaft: What’s your personal connection to Google?

Bechtolsheim: My friend David Cheriton, who is a professor at Stanford, introduced me to Sergey Brin and Larry Page. Their idea to sort search results by relevance, which is calculated by the number of links between websites, convinced me right away. It does not matter what the content of a website is, the only thing that counts is how many and how many relevant websites are linked to this website. This approach is immune against tricks some sites use to artificially raise their hits, such as embedding the same word many, many times in a way that is invisible to the user.

And the business model of linking relevant search results to relevant sponsored links was a stroke of genius that had not occurred to anyone else.

Spektrum der Wissenschaft: In your new company, Arista, you are focused mainly on building network switches. What pushed you in this direction?

Bechtolsheim: All large web companies are building large data centers for what is now called “cloud computing.” This concept used to be called grid computing, computing clusters or server farms. There is extensive data transfer among the servers in these cloud compute clusters. The end result of this computational work, such as a list of search results, doesn’t contain much data, but to calculate the relevance of a website, the page rank, you have to look through large amounts of data.

The demand for bandwidth rises in proportion to the speed of the servers and the number of servers in such a cloud. With 10,000 servers that require 1 gigabit per second per server, the cloud network has to move 10 terabits per second. Of critical importance is that the switches allocate bandwidth fairly to all servers and connect them with very low latency.

Spektrum der Wissenschaft: Do you build your own switch silicon for your systems?

Bechtolsheim: No. In contrast to 10 years ago, today there are very good switch chips and network processors that there is no need to develop your own silicon, which is extremely expensive to do.

Spektrum der Wissenschaft: What do you bring to the table?

Bechtolsheim: We develop the network software. A switch needs to respond to a large number of protocols to operate correctly. We have developed a very modular and robust network operating system that we call EOS, which has separate processes for each task in the networking stack. If a process fails or gets updated, it does not affect the operation of the switch and the system continues without interruption. As a result our system is very stable. Further, EOS runs on top of a standard Linux kernel.

This means we can run any other program on the same switch, including customer specific solutions.

Spektrum der Wissenschaft: How many computers can one switch handle?

Bechtolsheim: Customers usually configure 20 to 40 computers per rack. Our rack-top switches have up to 48 ports, 40 of which connect to the computers in the rack and the rest connect to our core switch, which has hundreds of ports. This allows us to support very large clusters with 10,000s of servers.

The computers are so fast nowadays that in many cases the network bandwidth has become the limiting factor. With our switches we offer customer a great way to increase overall system performance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This