Julich Supercomputing Center Keeps Germany on the Cutting Edge of HPC

By John West

June 22, 2009

Thomas Lippert, director of the Jülich Supercomputing Center in Germany, is speaking at this year’s International Supercomputing Conference in Hamburg about his experiences with the exotic systems that lead the TOP500 list of the HPC community’s preeminent supercomputers, and the scientific breakthroughs that they enable. He is in a position to speak with some authority on the subject: JUGENE, Jülich’s 223 teraflops Blue Gene/P debuted at number two on the November 2007 TOP500 list, and a year later was still at number 11. With JUGENE’s recent upgrade to a peak petaflop, the center will claim a top 5 spot on the list. And Jülich has also been hard at work on a new 300 teraflops system that they expect to debut in the top 10.

We caught up with Dr. Lippert by email before the conference to get a sneak peak at his thoughts on working at the extremes of computation.

HPCwire: You are speaking during a panel session called “Hype & Reality: Experiences with the Leading Systems from the TOP500 List.” This is a provocative name for a session! Can you tell us what the reality has been for you with JUGENE as a center operator?

Thomas Lippert: When the Jülich Supercomputing Center started offering a 6 teraflops Blue Gene/L in 2005, there was no “hype” at all. The simple “reality” was that no available supercomputer technology could scale far beyond 1,000 processors for most of the challenging application codes. Before, we had organized a workshop inviting Blue Gene friends as well as antagonists from several scientific disciplines with the need for large-scale simulations. Many of the antagonists turned from Saul to Paul and became convinced that it might be very worthwhile to complement our IBM p690 systems by this type of highly-scalable machine.

Since then we have continuously stepped the performance up, going to a 46 teraflops Blue Gene/L at the beginning of 2006, a 223 teraflops Blue Gene/P at the end of 2007, and now our petaflops system, JUGENE. In this process, it was most important that we could keep our users with us. Together, we certainly have contributed to shape reality and to create hype for petaflops.

Of course, we had to learn together with our friends from IBM how to install and operate the Blue Gene systems, as is always the case with novel innovative technology. The installations for the upgrades went smooth and fast, and the Blue Gene systems have always been extremely reliable. During the installation of the first 16-rack Blue Gene/P worldwide some buggy processors kept us busy for about two months, but the current petaflops system was installed and benchmarked within only one month and it has been running stable since then. After the tuning of our 6-petabyte GPFS, we expect production will start at the beginning of July. However, JUGENE required a considerable time for preparation as we changed our infrastructure from air to water cooling. With water cooling we can benefit fully from the exceptional energy efficiency of JUGENE.

Actually Jülich is following a dual strategy: at the time we installed the petaflops system, we also built a 300 teraflops cluster system, consisting of JuRoPA and HPC-FF — the latter for the fusion community – with 24,000 cores altogether. These systems are based on Intel quad-core Nehalems and Mellanox/Sun Microsystems interconnect technology. Together with our partners Bull and Sun, we managed to bring the system into operation within one month and to achieve a rank in the top 10 of the TOP500. This is, to a large extent, the success of the cluster management software ParaStation, which is produced by ParTec in Munich.
JUGENE Blue Gene/P Supercomputer

HPCwire: And from a user perspective? What challenges have you faced bringing your user community along on some of the largest machines in the world?

Lippert: As I said, I think we managed to take the users with us. Despite a very strict peer review of the projects, which is carried out by our independent, science-governed John von Neumann Institute for Computing, the available time on the highly-scalable Blue Gene systems was always substantially overbooked by a factor of 5 to 10. This shows that the Blue Gene proved to be an extremely attractive supercomputer for many scientific fields, ranging from materials sciences, theoretical chemistry, computational biology, and elementary particle physics to engineering.

Initially, it took us half a year to get about 20 different application codes running on the system, while only those codes that could use more than 64 processors on a p690 qualified as eligible for the Blue Gene/L. Since then, the base of codes has been broadened considerably and the codes are optimized continuously. In order to achieve high performance, most kernel routines were improved by hand-coded assembler portions, or rely on highly-optimized libraries provided by IBM’s software magicians. In fact, achieving high performance on our Intel clusters means modifying the codes using SSE and sophisticated libraries as well.

HPCwire: Have your users encountered new problems as they’ve run at the very large sizes that JUGENE enables? If so, have they been able to fix or change the codes themselves, or have they needed special assistance (perhaps from experts on your own staff or from IBM)?

Lippert: The fundamentally new challenges on machines with more than 10,000 cores are that many of the traditional algorithms cannot be made scalable from a principle point of view, that some approaches inherently need an increased amount of memory per node with increased numbers of nodes, and that memory bandwidth per flop tends to lag behind performance.

To meet these challenges, it will in general not be sufficient to simply introduce new algorithms for an application code and its parallel implementation. I believe that most of the codes will have to be restructured ab-initio, i.e., we have to use those models in engineering applications or computer formulations of fundamental theories that are unconditionally scalable. I even think that this will have an important impact on science itself.

In order to adapt our support structures to this situation, at Jülich, we established simulation laboratories. While simulation labs are community-oriented, i.e., each simulation lab focuses on a specific community, they are structured in a strictly interdisciplinary manner, comprising mathematicians, computer scientists and technicians along with disciplinary scientists. Simulation labs are led by a disciplinary scientist, and representatives of the respective disciplines give guidance to its operation. This is our model to tackle the tremendous software challenges of the petaflops era and beyond.

HPCwire: Your talk is actually about scientific breakthroughs on the system. Can you outline a few of those for us?

Lippert: One of our major user groups, headed by Professor Dominik Marx from the University of Bochum, exploits the Jülich supercomputers to investigate how the simplest protein molecules could have originated more than four billion years ago — long before there was any life on Earth. High pressure, high temperatures, and sulphur-containing minerals may have played an important part in the origins of life. Marx and co-workers have been able to show by simulation for the first time, under conditions still found today at hot volcanic vents in the deep ocean, it would indeed have been possible for amino acids to combine to form protein chains — even without the biological tools normally required for cells to produce proteins.

The scenario of the primeval iron and sulphur world was created virtually on Jülich’s Blue Gene supercomputer. Two simulated amino acids — simple glycine molecules — came into contact on the computer, proceeding from the electrons and atomic nuclei of the molecules involved. It was found that the higher the simulated pressure and the hotter the virtual water, the more easily a peptide bond was formed between two amino acids, the fundamental process in protein synthesis. It would be extremely difficult to perform such experiments in the laboratory in a controlled manner. More than 2,000 processors of the Blue Gene worked over four months to get to this result, running an ab-initio density functional code, which is very well suited for the highly scalable system.

Heart disease is the number one killer in industrialized countries, a condition that is sometimes treated with a small implantable pump that can provide support for a weakened heart. Researchers around Professor Marek Behr from RWTH Aachen University have made use of JUGENE to optimize the flow inside such a pump.

In order to provide sufficient support for the heart it must be able to pump several liters of blood through the body each minute. Moving this volume of blood through a small pump in such a short amount of time creates strong shearing forces and thus creates a danger that the impeller — a component inside the pump — may squash the delicate blood cells and platelets as it rotates 10,000 times a minute. Computational studies of the pump are necessary to understand its behavior and to improve the design to ensure that patients receive the therapeutic support they need.

They computation is extremely complicated, however, and in order to distribute the calculations among the large number of processors on the JUGENE, the pump is divided up into small pieces and each processor is then responsible for one of these segments. Of course, after the calculation is complete all of the sub-solutions have to be put back together again in order to create a complete picture of the pump’s behavior. The exchange of data between the processors during the computation is significant. Thanks to our performance group, the simulation was scaled up from 800 to 8,000 processors and now runs roughly ten times as fast as it did before.

As a final example I would like to quote one of the “scientific breakthroughs of the year 2008” as chosen by the journal Science: the computation of the masses of the hadrons in the theory of the strong interactions, quantum chromodynamics. After 25 years of continuous improvements of simulations of the theoretical elementary particle physics community working on the fastest computers worldwide, it was a German-Hungarian-French team led by Professor Zoltán Fodor that succeeded in demonstrating that quantum chromodynamics correctly describes the hadrons as composites of quarks and gluons. This is probably the first time ever that a fundamental theory was validated by computer, and it has been made possible through extensive improvements of the implementation of the simulation code on JUGENE, achieving nearly 40 percent of the peak performance and showing perfect strong scaling to 64,000 cores.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This