Parallel Programming Is Here – Are You Ready?

By Nicole Hemsoth

June 23, 2009

Whether you’re simulating the extreme conditions inside an exploding star or designing an ergonomically innovative office chair, it’s a good bet that a high performance computing (HPC) system and some brain-bending programming will be involved.

The HPC system may be a supercomputer like the 1.6 petaflop Jaguar behemoth at Oak Ridge National Laboratory, or a cluster powered by off-the-shelf multicore components. Whatever the scale of the hardware and the scope of the application, developers will have to learn how to deal with the complexities of parallel programming to get the most out of their computational resources.

The need for parallel programming is being driven by advances in multicore architectures. This rapid and accelerating technology trend is creating an array of HPC systems that range from dual and quad core systems to supercomputers and clusters with tens, hundreds and thousands of cores. These platforms perform at teraflop and petaflop speeds on terabytes of data. Capable of tackling some of today’s most complex and pressing problems in engineering and science, these HPC systems are composed of a computational ecosystem that includes: scalable multicore architectures; fast, flexible, mammoth memories that can support many simultaneous threads; and high bandwidth I/O and communications.

Developers who have honed their parallel programming skills are ready to create applications that reach new levels of scalability, performance, safety and reliability. In particular, parallelism can be exploited in mechanical computer-aided engineering (MCAE) applications code for structural analysis and fluid dynamics, in computational chemistry and computational physics simulations and modeling, and industrial applications that run the gamut from oil and gas exploration to the design of high end golf equipment. For example, in the world of MCAE, Dale Layfield, engineer in Sun Microsystem’s ISV Engineering organization, points to the benefits realized by applying parallelization to NASTRAN, a venerable finite element analysis (FEA) program that has been around for about 40 years.

“NASTRAN is a highly compute and I/O intensive structural analysis program,” explains Layfield. “It lends itself well to being broken into smaller components and spreading those components across distributed computer clusters which substantially reduces throughput time. Distributed memory parallelism (DMP) helps eliminate the I/O bottleneck by dividing the analysis across a network of separate nodes. Multithreaded SMP (symmetric multiprocessing) allows you to make best use of the processing power within each node. SMP combined with DMP gives you the most bang for your buck.”

Like NASTRAN, many of the other complex applications designed to run on HPC systems rely on parallel programming methodologies to handle the increasing number of computationally intensive jobs involving massive amounts of data and memory.

As David Conover, Chief Technologist, Mechanical Products for ANSYS notes, “Among the major benefits of parallel programming are faster turnaround time and the ability to create higher fidelity simulations and modeling to solve engineering design challenges. Engineers applying finite element methods can create models with much higher spatial resolutions and more geometric detail. And they can build models that include entire assemblies, rather than just one small component. Then they can analyze the interactions between those components at a high level of detail. Because the users are able to perform more simultaneous tasks of increased complexity, the entire engineering process is far more productive. You just can’t achieve this level of functionality with applications that rely on sequential processes.”

By creating larger high fidelity models with greater geometric detail and subjecting them to detailed simulations of the physical forces that they will encounter in real life, engineers can reduce the need for expensive and time-consuming physical testing — the “build and break” approach. In addition, parallelization allows engineers to run more simulations in order to make design decisions earlier in the project lifecycle.

To achieve the speedup in applications performance, parallel programming uses threads that allow multiple operations to occur simultaneously. In an article in the May 20, 2009 HPCwire titled,“Parallel Programming: Some Fundamentals Concepts,” authors Shameen Akhter and Jason Roberts, both of Intel, commented, “The entire concept of parallel programming centers on the design, development and deployment of threads within an application and the coordination between threads and their respective operations.”

In short, parallel programming allows you to write scalable, flexible code that harnesses more HPC CPU resources and maximizes memory and I/O. It also allows users of the code — whether it’s you, a member of your organization’s engineering or scientific staff, or a customer – to solve problems that could not be solved using sequential programs, and solve them more quickly.

Parallel programming is not easy

However, as computer science professor Andrew S. Tanenbaum stated at the USENIX ’08 conference, “Sequential programming is really hard…the difficulty is that parallel programming is a step beyond that.”

Bronson Messer, a computational astrophysicist at Oak Ridge National Laboratory (ORNL), concurs. He points out that to do computing at the large scales he and his colleagues encounter daily, the application developer needs to understand the entire HPC ecosystem which includes multicore CPUs, high speed file and connective systems, and terabytes of memory that have to be swapped in and out at blinding speeds.

“Everything has to play together,” Messer says. “If there is a weak link at this scale, it will almost immediately be exposed. Your parallel code may run on a quad-core or eight-core system, but when you move up to thousands and tens of thousands of processors, your application may be dead in the water. Debugging code on this many processors is an unsolved problem.”

Messer also comments that building robustness and fault tolerance into the code is another major hurdle as the rate of data collection escalates. For example, the Sloan Digital Sky Survey telescope in Sun Spot, New Mexico is precisely mapping a swath of space some five billion light years in diameter, generating terabytes, even petabytes of data every night. And when CERN’s Large Hadron Collider finally comes on line, it will generate 700 megabytes of data every second.

These parallel programming speed bumps not only apply to code written for the huge supercomputers that are the workhorses of government labs and academia. Developers creating algorithms for the rapidly growing population of HPC grids, clusters and clouds that are infiltrating the enterprise are running into similar problems. And within industry the pressure is even more intense as companies seek to gain a competitive edge through the use of HPC.

When asked what he thought was the most difficult task facing developers working with this new programming paradigm, Scott J. Lasica, VP Technical Services Worldwide for HPC toolmaker Rogue Wave Software, was very clear. “Today’s developers need to learn to do multithreading, which, in my opinion, is one of the hardest — if not the hardest — task associated with software programming. Given the level of complexity we’re dealing with, it’s very easy to make mistakes and very hard to figure out where things went wrong.”

What’s a developer to do?

Lasica points out that fortunately there are a lot of tools available to help developers write multithreaded code in languages like C++ and Java — even Fortran. For example, a Java(TM) application can be dropped into an application server and the server will take care of the threading. Various new debugging tools also help ease the bumpy road to parallelization. But Lasica says that a thorough grounding in the intricacies of multithreading is essential for developers dealing with today’s complex distributed systems.

Reza Sadeghi, CTO of MSC Software agrees. And he also prescribes a major mind shift for today’s developers. “Developers tend to think serially, not in terms of what they can do with multiple CPUs,” he explains. “And even if they are thinking parallel, they are still in the realm of dual, quad or eight cores. But the new HPC systems are raising the bar to encompass hundreds and thousands of cores as well as multicore sub architectures. It’s a whole new way of building algorithms and solving complex loops. By adopting this different mindset, backed up by learning all you can about parallelism and multithreading, you can make optimum use of the many diagnostic tools that are now available and build successful HPC applications.”

Advanced programming models also help ease the developer’s path. Among the most popular are OpenMP for shared memory programming, and MPI (message passing interface) for distributed memory programming.

ORNL’s Messer adds that given the rapid pace of technology, it is important for developers to create algorithms that will scale far beyond their current systems. “If you know apriori that your algorithm won’t scale, you have an immediate problem,” he says. “With today’s multicore HPC systems, you are dealing with a deeper and more complicated memory hierarchy in addition to the problems inherent in multithreading. Despite advances in OS, compilers and programming models, you still may have to manage some of that hierarchy yourself. The results are worth it.”

Continuing education is key

Addison Snell, general manager of Tabor Research, comments that developers need to familiarize themselves with how to optimize software on multicore HPC systems. “I’m not sure the latest generation of software engineers has been trained to cope with advanced parallelism – there is a serious question of readiness in the software community,” he says.

It is certain that as the world of high performance computing heats up, and multicore, multithreaded systems move into the enterprise, those individuals who are familiar with parallel programming will command a favorable position in today’s rough and tumble job market. Application developers should be very familiar with the principles of parallel programming, including how to handle multithreading. They should also be acquainted with parallel tools, and be able to build thread-safe component interfaces. Also, both test engineers and field engineers should have parallel debugging skills and be familiar with parallel analysis and profiling tools.

In order to help developers and engineers meet the challenges posed by parallel programming, Sun Microsystems is offering a series of seminars called “An Introduction to Parallel Programming” discussing parallel programming as a fundamental of application development. Log on weekly to access each of these seven modules presented by mathematician and Sun senior staff engineer Ruud van der Pas. http://www.sun.com/solutions/hpc/development.jsp.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This