Parallel Programming Is Here – Are You Ready?

By Nicole Hemsoth

June 23, 2009

Whether you’re simulating the extreme conditions inside an exploding star or designing an ergonomically innovative office chair, it’s a good bet that a high performance computing (HPC) system and some brain-bending programming will be involved.

The HPC system may be a supercomputer like the 1.6 petaflop Jaguar behemoth at Oak Ridge National Laboratory, or a cluster powered by off-the-shelf multicore components. Whatever the scale of the hardware and the scope of the application, developers will have to learn how to deal with the complexities of parallel programming to get the most out of their computational resources.

The need for parallel programming is being driven by advances in multicore architectures. This rapid and accelerating technology trend is creating an array of HPC systems that range from dual and quad core systems to supercomputers and clusters with tens, hundreds and thousands of cores. These platforms perform at teraflop and petaflop speeds on terabytes of data. Capable of tackling some of today’s most complex and pressing problems in engineering and science, these HPC systems are composed of a computational ecosystem that includes: scalable multicore architectures; fast, flexible, mammoth memories that can support many simultaneous threads; and high bandwidth I/O and communications.

Developers who have honed their parallel programming skills are ready to create applications that reach new levels of scalability, performance, safety and reliability. In particular, parallelism can be exploited in mechanical computer-aided engineering (MCAE) applications code for structural analysis and fluid dynamics, in computational chemistry and computational physics simulations and modeling, and industrial applications that run the gamut from oil and gas exploration to the design of high end golf equipment. For example, in the world of MCAE, Dale Layfield, engineer in Sun Microsystem’s ISV Engineering organization, points to the benefits realized by applying parallelization to NASTRAN, a venerable finite element analysis (FEA) program that has been around for about 40 years.

“NASTRAN is a highly compute and I/O intensive structural analysis program,” explains Layfield. “It lends itself well to being broken into smaller components and spreading those components across distributed computer clusters which substantially reduces throughput time. Distributed memory parallelism (DMP) helps eliminate the I/O bottleneck by dividing the analysis across a network of separate nodes. Multithreaded SMP (symmetric multiprocessing) allows you to make best use of the processing power within each node. SMP combined with DMP gives you the most bang for your buck.”

Like NASTRAN, many of the other complex applications designed to run on HPC systems rely on parallel programming methodologies to handle the increasing number of computationally intensive jobs involving massive amounts of data and memory.

As David Conover, Chief Technologist, Mechanical Products for ANSYS notes, “Among the major benefits of parallel programming are faster turnaround time and the ability to create higher fidelity simulations and modeling to solve engineering design challenges. Engineers applying finite element methods can create models with much higher spatial resolutions and more geometric detail. And they can build models that include entire assemblies, rather than just one small component. Then they can analyze the interactions between those components at a high level of detail. Because the users are able to perform more simultaneous tasks of increased complexity, the entire engineering process is far more productive. You just can’t achieve this level of functionality with applications that rely on sequential processes.”

By creating larger high fidelity models with greater geometric detail and subjecting them to detailed simulations of the physical forces that they will encounter in real life, engineers can reduce the need for expensive and time-consuming physical testing — the “build and break” approach. In addition, parallelization allows engineers to run more simulations in order to make design decisions earlier in the project lifecycle.

To achieve the speedup in applications performance, parallel programming uses threads that allow multiple operations to occur simultaneously. In an article in the May 20, 2009 HPCwire titled,“Parallel Programming: Some Fundamentals Concepts,” authors Shameen Akhter and Jason Roberts, both of Intel, commented, “The entire concept of parallel programming centers on the design, development and deployment of threads within an application and the coordination between threads and their respective operations.”

In short, parallel programming allows you to write scalable, flexible code that harnesses more HPC CPU resources and maximizes memory and I/O. It also allows users of the code — whether it’s you, a member of your organization’s engineering or scientific staff, or a customer – to solve problems that could not be solved using sequential programs, and solve them more quickly.

Parallel programming is not easy

However, as computer science professor Andrew S. Tanenbaum stated at the USENIX ’08 conference, “Sequential programming is really hard…the difficulty is that parallel programming is a step beyond that.”

Bronson Messer, a computational astrophysicist at Oak Ridge National Laboratory (ORNL), concurs. He points out that to do computing at the large scales he and his colleagues encounter daily, the application developer needs to understand the entire HPC ecosystem which includes multicore CPUs, high speed file and connective systems, and terabytes of memory that have to be swapped in and out at blinding speeds.

“Everything has to play together,” Messer says. “If there is a weak link at this scale, it will almost immediately be exposed. Your parallel code may run on a quad-core or eight-core system, but when you move up to thousands and tens of thousands of processors, your application may be dead in the water. Debugging code on this many processors is an unsolved problem.”

Messer also comments that building robustness and fault tolerance into the code is another major hurdle as the rate of data collection escalates. For example, the Sloan Digital Sky Survey telescope in Sun Spot, New Mexico is precisely mapping a swath of space some five billion light years in diameter, generating terabytes, even petabytes of data every night. And when CERN’s Large Hadron Collider finally comes on line, it will generate 700 megabytes of data every second.

These parallel programming speed bumps not only apply to code written for the huge supercomputers that are the workhorses of government labs and academia. Developers creating algorithms for the rapidly growing population of HPC grids, clusters and clouds that are infiltrating the enterprise are running into similar problems. And within industry the pressure is even more intense as companies seek to gain a competitive edge through the use of HPC.

When asked what he thought was the most difficult task facing developers working with this new programming paradigm, Scott J. Lasica, VP Technical Services Worldwide for HPC toolmaker Rogue Wave Software, was very clear. “Today’s developers need to learn to do multithreading, which, in my opinion, is one of the hardest — if not the hardest — task associated with software programming. Given the level of complexity we’re dealing with, it’s very easy to make mistakes and very hard to figure out where things went wrong.”

What’s a developer to do?

Lasica points out that fortunately there are a lot of tools available to help developers write multithreaded code in languages like C++ and Java — even Fortran. For example, a Java(TM) application can be dropped into an application server and the server will take care of the threading. Various new debugging tools also help ease the bumpy road to parallelization. But Lasica says that a thorough grounding in the intricacies of multithreading is essential for developers dealing with today’s complex distributed systems.

Reza Sadeghi, CTO of MSC Software agrees. And he also prescribes a major mind shift for today’s developers. “Developers tend to think serially, not in terms of what they can do with multiple CPUs,” he explains. “And even if they are thinking parallel, they are still in the realm of dual, quad or eight cores. But the new HPC systems are raising the bar to encompass hundreds and thousands of cores as well as multicore sub architectures. It’s a whole new way of building algorithms and solving complex loops. By adopting this different mindset, backed up by learning all you can about parallelism and multithreading, you can make optimum use of the many diagnostic tools that are now available and build successful HPC applications.”

Advanced programming models also help ease the developer’s path. Among the most popular are OpenMP for shared memory programming, and MPI (message passing interface) for distributed memory programming.

ORNL’s Messer adds that given the rapid pace of technology, it is important for developers to create algorithms that will scale far beyond their current systems. “If you know apriori that your algorithm won’t scale, you have an immediate problem,” he says. “With today’s multicore HPC systems, you are dealing with a deeper and more complicated memory hierarchy in addition to the problems inherent in multithreading. Despite advances in OS, compilers and programming models, you still may have to manage some of that hierarchy yourself. The results are worth it.”

Continuing education is key

Addison Snell, general manager of Tabor Research, comments that developers need to familiarize themselves with how to optimize software on multicore HPC systems. “I’m not sure the latest generation of software engineers has been trained to cope with advanced parallelism – there is a serious question of readiness in the software community,” he says.

It is certain that as the world of high performance computing heats up, and multicore, multithreaded systems move into the enterprise, those individuals who are familiar with parallel programming will command a favorable position in today’s rough and tumble job market. Application developers should be very familiar with the principles of parallel programming, including how to handle multithreading. They should also be acquainted with parallel tools, and be able to build thread-safe component interfaces. Also, both test engineers and field engineers should have parallel debugging skills and be familiar with parallel analysis and profiling tools.

In order to help developers and engineers meet the challenges posed by parallel programming, Sun Microsystems is offering a series of seminars called “An Introduction to Parallel Programming” discussing parallel programming as a fundamental of application development. Log on weekly to access each of these seven modules presented by mathematician and Sun senior staff engineer Ruud van der Pas. http://www.sun.com/solutions/hpc/development.jsp.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This