Parallel Programming Is Here – Are You Ready?

By Nicole Hemsoth

June 23, 2009

Whether you’re simulating the extreme conditions inside an exploding star or designing an ergonomically innovative office chair, it’s a good bet that a high performance computing (HPC) system and some brain-bending programming will be involved.

The HPC system may be a supercomputer like the 1.6 petaflop Jaguar behemoth at Oak Ridge National Laboratory, or a cluster powered by off-the-shelf multicore components. Whatever the scale of the hardware and the scope of the application, developers will have to learn how to deal with the complexities of parallel programming to get the most out of their computational resources.

The need for parallel programming is being driven by advances in multicore architectures. This rapid and accelerating technology trend is creating an array of HPC systems that range from dual and quad core systems to supercomputers and clusters with tens, hundreds and thousands of cores. These platforms perform at teraflop and petaflop speeds on terabytes of data. Capable of tackling some of today’s most complex and pressing problems in engineering and science, these HPC systems are composed of a computational ecosystem that includes: scalable multicore architectures; fast, flexible, mammoth memories that can support many simultaneous threads; and high bandwidth I/O and communications.

Developers who have honed their parallel programming skills are ready to create applications that reach new levels of scalability, performance, safety and reliability. In particular, parallelism can be exploited in mechanical computer-aided engineering (MCAE) applications code for structural analysis and fluid dynamics, in computational chemistry and computational physics simulations and modeling, and industrial applications that run the gamut from oil and gas exploration to the design of high end golf equipment. For example, in the world of MCAE, Dale Layfield, engineer in Sun Microsystem’s ISV Engineering organization, points to the benefits realized by applying parallelization to NASTRAN, a venerable finite element analysis (FEA) program that has been around for about 40 years.

“NASTRAN is a highly compute and I/O intensive structural analysis program,” explains Layfield. “It lends itself well to being broken into smaller components and spreading those components across distributed computer clusters which substantially reduces throughput time. Distributed memory parallelism (DMP) helps eliminate the I/O bottleneck by dividing the analysis across a network of separate nodes. Multithreaded SMP (symmetric multiprocessing) allows you to make best use of the processing power within each node. SMP combined with DMP gives you the most bang for your buck.”

Like NASTRAN, many of the other complex applications designed to run on HPC systems rely on parallel programming methodologies to handle the increasing number of computationally intensive jobs involving massive amounts of data and memory.

As David Conover, Chief Technologist, Mechanical Products for ANSYS notes, “Among the major benefits of parallel programming are faster turnaround time and the ability to create higher fidelity simulations and modeling to solve engineering design challenges. Engineers applying finite element methods can create models with much higher spatial resolutions and more geometric detail. And they can build models that include entire assemblies, rather than just one small component. Then they can analyze the interactions between those components at a high level of detail. Because the users are able to perform more simultaneous tasks of increased complexity, the entire engineering process is far more productive. You just can’t achieve this level of functionality with applications that rely on sequential processes.”

By creating larger high fidelity models with greater geometric detail and subjecting them to detailed simulations of the physical forces that they will encounter in real life, engineers can reduce the need for expensive and time-consuming physical testing — the “build and break” approach. In addition, parallelization allows engineers to run more simulations in order to make design decisions earlier in the project lifecycle.

To achieve the speedup in applications performance, parallel programming uses threads that allow multiple operations to occur simultaneously. In an article in the May 20, 2009 HPCwire titled,“Parallel Programming: Some Fundamentals Concepts,” authors Shameen Akhter and Jason Roberts, both of Intel, commented, “The entire concept of parallel programming centers on the design, development and deployment of threads within an application and the coordination between threads and their respective operations.”

In short, parallel programming allows you to write scalable, flexible code that harnesses more HPC CPU resources and maximizes memory and I/O. It also allows users of the code — whether it’s you, a member of your organization’s engineering or scientific staff, or a customer – to solve problems that could not be solved using sequential programs, and solve them more quickly.

Parallel programming is not easy

However, as computer science professor Andrew S. Tanenbaum stated at the USENIX ’08 conference, “Sequential programming is really hard…the difficulty is that parallel programming is a step beyond that.”

Bronson Messer, a computational astrophysicist at Oak Ridge National Laboratory (ORNL), concurs. He points out that to do computing at the large scales he and his colleagues encounter daily, the application developer needs to understand the entire HPC ecosystem which includes multicore CPUs, high speed file and connective systems, and terabytes of memory that have to be swapped in and out at blinding speeds.

“Everything has to play together,” Messer says. “If there is a weak link at this scale, it will almost immediately be exposed. Your parallel code may run on a quad-core or eight-core system, but when you move up to thousands and tens of thousands of processors, your application may be dead in the water. Debugging code on this many processors is an unsolved problem.”

Messer also comments that building robustness and fault tolerance into the code is another major hurdle as the rate of data collection escalates. For example, the Sloan Digital Sky Survey telescope in Sun Spot, New Mexico is precisely mapping a swath of space some five billion light years in diameter, generating terabytes, even petabytes of data every night. And when CERN’s Large Hadron Collider finally comes on line, it will generate 700 megabytes of data every second.

These parallel programming speed bumps not only apply to code written for the huge supercomputers that are the workhorses of government labs and academia. Developers creating algorithms for the rapidly growing population of HPC grids, clusters and clouds that are infiltrating the enterprise are running into similar problems. And within industry the pressure is even more intense as companies seek to gain a competitive edge through the use of HPC.

When asked what he thought was the most difficult task facing developers working with this new programming paradigm, Scott J. Lasica, VP Technical Services Worldwide for HPC toolmaker Rogue Wave Software, was very clear. “Today’s developers need to learn to do multithreading, which, in my opinion, is one of the hardest — if not the hardest — task associated with software programming. Given the level of complexity we’re dealing with, it’s very easy to make mistakes and very hard to figure out where things went wrong.”

What’s a developer to do?

Lasica points out that fortunately there are a lot of tools available to help developers write multithreaded code in languages like C++ and Java — even Fortran. For example, a Java(TM) application can be dropped into an application server and the server will take care of the threading. Various new debugging tools also help ease the bumpy road to parallelization. But Lasica says that a thorough grounding in the intricacies of multithreading is essential for developers dealing with today’s complex distributed systems.

Reza Sadeghi, CTO of MSC Software agrees. And he also prescribes a major mind shift for today’s developers. “Developers tend to think serially, not in terms of what they can do with multiple CPUs,” he explains. “And even if they are thinking parallel, they are still in the realm of dual, quad or eight cores. But the new HPC systems are raising the bar to encompass hundreds and thousands of cores as well as multicore sub architectures. It’s a whole new way of building algorithms and solving complex loops. By adopting this different mindset, backed up by learning all you can about parallelism and multithreading, you can make optimum use of the many diagnostic tools that are now available and build successful HPC applications.”

Advanced programming models also help ease the developer’s path. Among the most popular are OpenMP for shared memory programming, and MPI (message passing interface) for distributed memory programming.

ORNL’s Messer adds that given the rapid pace of technology, it is important for developers to create algorithms that will scale far beyond their current systems. “If you know apriori that your algorithm won’t scale, you have an immediate problem,” he says. “With today’s multicore HPC systems, you are dealing with a deeper and more complicated memory hierarchy in addition to the problems inherent in multithreading. Despite advances in OS, compilers and programming models, you still may have to manage some of that hierarchy yourself. The results are worth it.”

Continuing education is key

Addison Snell, general manager of Tabor Research, comments that developers need to familiarize themselves with how to optimize software on multicore HPC systems. “I’m not sure the latest generation of software engineers has been trained to cope with advanced parallelism – there is a serious question of readiness in the software community,” he says.

It is certain that as the world of high performance computing heats up, and multicore, multithreaded systems move into the enterprise, those individuals who are familiar with parallel programming will command a favorable position in today’s rough and tumble job market. Application developers should be very familiar with the principles of parallel programming, including how to handle multithreading. They should also be acquainted with parallel tools, and be able to build thread-safe component interfaces. Also, both test engineers and field engineers should have parallel debugging skills and be familiar with parallel analysis and profiling tools.

In order to help developers and engineers meet the challenges posed by parallel programming, Sun Microsystems is offering a series of seminars called “An Introduction to Parallel Programming” discussing parallel programming as a fundamental of application development. Log on weekly to access each of these seven modules presented by mathematician and Sun senior staff engineer Ruud van der Pas.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This