Welcome to Year 1 AP

By John West

June 23, 2009

On Wednesday at ISC’09 Thomas Sterling, the Arnaud & Edwards Professor of Computer Science at Louisiana State University and longtime HPC innovator, will give a keynote presentation looking back and what we’ve achieved in the past year, and what we are likely to see next as we cross into the petaflops era. We caught up with him before the session to talk about that keynote, and to get his sense for where our community’s next challenges will lie.

Thomas Sterling

HPCwire: Your keynote talk on Wednesday will both look back at the major accomplishments of reaching a petaflops of performance and a look forward to exaflops. The petaflops achievement was an important engineering accomplishment, but what does it mean for Joe the Plumber? Why should he care?

Thomas Sterling: We as a world society are bound by decisions and actions taken concerning the environment, energy, biomedical, agriculture, financial, and peace maintenance, as well as an economy driven in large part by innovation. Such decisions and opportunities must be founded in high confidence quantitative understanding of the choices and their consequences. HPC is emerging as the principal means of deriving such knowledge through simulation and data analysis.

Joe the Plumber need not worry about the subtle nuances of HPC systems in order to care that this dimension of social change succeeds. Each epoch of our field has seen new advances that have catalyzed myriad others, enabling industry advances and government policies to undertake the best course of action on behalf of all of us. Yet, critical challenges still remain to be resolved that demand orders of magnitude increase in affordable sustained performance.

Here in year 1 AP (After Petaflops), we mark both the accomplishment and the challenge to fulfill our obligation to Joe to serve as stewards of Earth’s limited resources while expanding our innate knowledge and capability for its people and future generations.

HPCwire: What are the major achievements of this past year in both hardware and software?

Sterling: The major accomplishments of the past year have been the learning curves in which the HPC community has been engaged in four areas: 1) programming multicore, 2) working at petaflops scale, 3) harnessing GPU accelerators, and 4) defining a path toward exascale system design and usage.

Multicore, arguably the most immediate of the challenges in an admittedly crowded space, is the target of commercial and academic research to provide effective programming methodologies. One or probably multiple solutions to this problem are required to sustain the anticipated exponential growth of observed user application performance with the increase in number of cores per socket driven by Moore’s Law. Intel’s TBB, Microsoft’s Concert, MIT’s Cilk, and our own (LSU’s) ParalleX are among the different implementation approaches being pursued.

With Roadrunner and Jaguar deployed, experience with petaflops scale platforms is accruing with all indications suggesting smooth transition in to the pan-petaflops performance regime, at least for a subset of real world applications.

CUDA and OpenCL are exemplars of distinct strategies needed to harness heterogeneous system architectures and exploit special purpose devices when and as appropriate. This is likely to be a major thrust area for next generation systems, and this year has seen much tool building and early user acceptance.

Within the US multiple Federal agencies have undertaken detailed studies of the design factors for exascale systems likely to be deployed by the end of the next decade, but potentially looking (and feeling) much different from today’s early petaflops machines. By the way, this is not a universally held view with many experts confident that incremental advances built on top of contemporary techniques will be adequate to expand system capability three orders of magnitude. DOE, after its sequence of three “town hall meetings,” is now undertaking a series of focused exascale workshops on application domains and systems issues. DOE’s Institute for Advanced Architecture and Algorithms (IAA) has a stated goal of engaging in pursuits towards realizing effective exascale performance. DARPA has sponsored three studies in exascale technology, software, and resilience performed by leaders in the field.

The NSF is sponsoring five universities (UIUC, UT-Austin, LSU, USC, and Un. of Delaware) to conduct a two-year exascale point design study for a first-look in-depth study of one possible system stack from programming models through runtime and OS, to system and core architectures. And the international community has undertaken IESP, the International exascale Software Project, to bring world-wide expertise to the very challenging prospect of programming and managing exascale systems through a future software stack.

HPCwire: Today’s exotically large systems are comprised of many technologies. We have multicore processors by the tens of thousands, and in some cases machines that lock together many different kinds of processors to reach high levels of performance. Do we know how to program these machines effectively enough to justify the expense of building them? Asked another way, is the skills vector of the HPC applications crowd and tools vendors pointing in the direction of increasingly efficacious use of these systems?

Sterling: Historically, this has always been a challenge. While HPL efficiencies have readily ranged from the 60 to 80 percentiles and more, real-world applications in many cases have exhibited single-digit efficiencies. User programming methodologies have required close attention to details of allocation and scheduling, with the mitigating value of libraries that have amortized the efforts of a few across the needs of the many, when appropriate.

The software has always lagged the hardware. With HPC in a phase change it is clear that software will be a combination of conventional methods forced in to increasingly ill-fitting roles, and possible new methods that either are crafted to reflect the high degree of multicore parallelism and heterogeneous structures or hide these low level details from the users, relying instead on advanced runtime systems. Curiously even when techniques have been available such as hierarchies of MPI with OpenMP combined with CUDA we don’t find wide usage, in part because of lack of portability.

A strong preference for a more unified model is demonstrated after the transient experimentation has damped out. PGAS languages like UPC, widely referred to, nonetheless outside of a narrow community have not developed a strong user code base, although it is a success in the service it has achieved. We have yet to fully understand the potential impact of the HPCS languages Chapel and X10. My concerns are the ability through programming, runtime, OS, and even architecture means to address the challenges of starvation, latency, overhead, and waiting for contention (SLOW), innate reliability in the presence of faults, and active power-aware management.

With the need for billion-way parallelism is less than ten years, I believe that a new model of computation will have to be devised and adopted to facilitate the co-design of all system layers, both hardware and software. This will require a new set of skills and tools including those that will permit seamless transition of legacy codes on new generation machines. But we have made this kind of transition before during past HPC phase changes. I am sanguine that we can do so again. With the encroachment of atomic granularity, Boltzmann’s constant, and the speed of light as we approach nano-scale technology, this may be the last time we will have to experience such a change. But history shows that any such pronouncement ultimately proves silly as disciplines so constrained ultimately jump S-curves to entirely new paradigms.

HPCwire: Should we abandon the building of very large machines today out of commodity components (cheap, but hard to manage and use) in favor of machines that are more suited to supercomputing tasks (expensive, but easier to manage and use)? If we should, could we conceivably do this, or has the ship sailed on the days of custom HPC?

Sterling: I expect that ultimately we will continue to build very large machines from commodity components, but they will not be based on today’s conventional parts.

The problems facing the HPC community — such as multicore, accelerators, power consumption, and reliability — are as important to the commercial markets (including embedded processors, mobile computing, the financial markets, search engines, etc.) as they are to us. They will demand architectures very different from current cores found in workstations, enterprise servers, clusters, and MPPs. It is likely that the HPC community will explore these issues first in most cases, and that trickle-bounce will migrate these technology solutions to the commercial manufacturers which, through economy of scale, will return them as commodity parts back to the HPC system vendors.

Again, this is not the mainstream view, but I expect processors to take two distinct forms: embedded memory processors (sometimes referred to as PIM) and streaming architectures with high density arithmetic unit arrays to address the disparate temporal locality properties exhibited by different parts of computations. Stanford’s Merrimac and UT-Austin’s TRIPS architectures are examples of such streaming processors. The USC DIVA architecture is one example of an embedded memory processor. These will greatly reduce the energy per operation and provide possible the best efficiencies of which the technologies are capable. So YES; we will use commodity components, but they won’t be descended from today’s commodity components.

HPCwire: Do the failure of SiCortex, SGI, Quadrics, and Woven in this quarter (!) tell us something about the fundamental nature of HPC and its customers, or is this just the confluence of brittle business models and a bad economy from which no broader lessons are to be learned?

Sterling: It’s important to define our meaning of the term “failure” in each case as they differ, and indeed are likely to be perceived differently between observers as well. The vast majority of system technology vendors have experienced measurable reduction in revenues, especially measured against engineering and marketing staff. Clearly, these companies shared the unfortunate experience of having not survived as independent viable businesses in a difficult financial market where cash reserves and market share were insufficient to ride out the prevailing conditions.

Quadrics suffered from an industry-wide shift in system area networking adopting de facto standards of Ethernet and InfiniBand; in some sense becoming obsolete. SGI has struggled for years offering unique technology, but with insufficient value-added to the broad high end market. I have long felt that if SGI had been more aggressive incorporating latency-hiding technology, as well as low overhead shared address space capability, that they could have delivered a truly remarkable system: a scalable shared memory multiple thread system in which user productivity would be greatly enhanced and user application execution less sensitive to locality. In a sense they did only half the job, requiring programmers explicitly manage data and control locality. As a consequence the relative advantage over the use of distributed memory systems was constrained. But the cost of design and manufacture was burdened with these additional technical challenges including scaling.

SiCortex was my biggest disappointment. Their product was well-engineered and moderately innovative, delivering a dense package with very low power and good performance to cost. They controlled their ASIC and network firmware which gave them and their partners surprising opportunities for future advances. They had multiple years of reasonable growth and had achieved that rare buzz in the community that most marketing departments crave but never attain. I fear that the HPC community overall has lost an opportunity here and that we may prove to be even more conservative in our future enterprises than we have been in the recent past.

But one struggles from this experience to learn from it. The market is largely on hold except for critical purchases. It is easy to defer procurements two or more quarters for replacement systems, especially when one is paying for peak capability rather than sustained capacity as is the case for some high-end HPC acquisitions. At the risk of over simplifying, there are two kinds of HPC products: 1) those that deliver conventional services and capability at best cost and power, and 2) those that offer unique capabilities through innovation that contribute to user opportunity and market demand. SGI and Quadrics both attempted to fall within the latter category. But the value added was not broadly sufficient to garner adequate market share. SiCortex fell in to the former category and was a victim of the difference not being big enough fast enough in a tough financial time. I’m still waiting to see what’s going to happen in this case.

HPCwire: When it comes to the exaflops machines of the next decade, can we continue on the current technology vector that gave us petaflops, or do we need to start over? If we do need to start over, will we?

Sterling: This is a controversial question with room for a broad array of opinions. Mine is not representative of the mainstream which anticipates a sequence of incremental steps culminating in a practical exascale capable system before the end of the next decade.

I have participated in multiple DOE exascale meetings, two DARPA exascale studies, the International Exascale Software Project (IESP), and the NSF sponsored Exascale Point Design Study. I have come to truly appreciate the hurdles with which exascale is confronted in power, reliability, scalability, and programmability, even if Moore’s Law delivers on 10 nanometer feature size towards the end of the next decade along with optical chip-to-chip communication.

As I have suggested above, the core architectures are going to have to change to address these problems. Much of the ever-popular speculative execution techniques will be greatly reduced or eliminated due to power concerns. Locality and communications management will also be different for the same reason along with reliability (which also impacts power). But in addition, two major system-wide changes will occur driven by programmability and efficiency issues: global address space and message-driven computation. Both concepts have a long tradition in the HPC research community, but have not migrated to commercial systems (CRI T3E is certainly an exception). We are seeing now strong interest in various global address schemes, but users still program on scalable systems primarily with distributed memory models. Various message-driven models including actors, dataflow, the J-machine, and active messages have been explored allowing new methods of managing parallelism, but they have not migrated to the mainstream except in very coarse grain methods like remote procedure calls for web services and grid-like applications.

Architecture support will be critical, as will dynamic runtime system support, to enable this new mechanism, and programming models and methods will have to make this capability available to users either explicitly (not preferred) or implicitly (may not be possible). One area where this will have a big impact is in the domain of dynamic graph applications for informatics problems, which are becoming of increasing interest. I am expecting we will see these mechanisms and strategies serve as the new foundation for future exascale systems driven by need and opportunity.

—–

Dr. Thomas Sterling is a Professor of Computer Science at Louisiana State University, a Faculty Associate at California Institute of Technology, and a Distinguished Visiting Scientist at Oak Ridge National Laboratory. He received his Ph.D as a Hertz Fellow from MIT in 1984. He is probably best known as the father of Beowulf clusters and for his research on petaflops computing architecture. Professor Sterling is the co-author of six books and holds six patents. He was awarded the Gordon Bell Prize with collaborators in 1997.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This