Welcome to Year 1 AP

By John West

June 23, 2009

On Wednesday at ISC’09 Thomas Sterling, the Arnaud & Edwards Professor of Computer Science at Louisiana State University and longtime HPC innovator, will give a keynote presentation looking back and what we’ve achieved in the past year, and what we are likely to see next as we cross into the petaflops era. We caught up with him before the session to talk about that keynote, and to get his sense for where our community’s next challenges will lie.

Thomas Sterling

HPCwire: Your keynote talk on Wednesday will both look back at the major accomplishments of reaching a petaflops of performance and a look forward to exaflops. The petaflops achievement was an important engineering accomplishment, but what does it mean for Joe the Plumber? Why should he care?

Thomas Sterling: We as a world society are bound by decisions and actions taken concerning the environment, energy, biomedical, agriculture, financial, and peace maintenance, as well as an economy driven in large part by innovation. Such decisions and opportunities must be founded in high confidence quantitative understanding of the choices and their consequences. HPC is emerging as the principal means of deriving such knowledge through simulation and data analysis.

Joe the Plumber need not worry about the subtle nuances of HPC systems in order to care that this dimension of social change succeeds. Each epoch of our field has seen new advances that have catalyzed myriad others, enabling industry advances and government policies to undertake the best course of action on behalf of all of us. Yet, critical challenges still remain to be resolved that demand orders of magnitude increase in affordable sustained performance.

Here in year 1 AP (After Petaflops), we mark both the accomplishment and the challenge to fulfill our obligation to Joe to serve as stewards of Earth’s limited resources while expanding our innate knowledge and capability for its people and future generations.

HPCwire: What are the major achievements of this past year in both hardware and software?

Sterling: The major accomplishments of the past year have been the learning curves in which the HPC community has been engaged in four areas: 1) programming multicore, 2) working at petaflops scale, 3) harnessing GPU accelerators, and 4) defining a path toward exascale system design and usage.

Multicore, arguably the most immediate of the challenges in an admittedly crowded space, is the target of commercial and academic research to provide effective programming methodologies. One or probably multiple solutions to this problem are required to sustain the anticipated exponential growth of observed user application performance with the increase in number of cores per socket driven by Moore’s Law. Intel’s TBB, Microsoft’s Concert, MIT’s Cilk, and our own (LSU’s) ParalleX are among the different implementation approaches being pursued.

With Roadrunner and Jaguar deployed, experience with petaflops scale platforms is accruing with all indications suggesting smooth transition in to the pan-petaflops performance regime, at least for a subset of real world applications.

CUDA and OpenCL are exemplars of distinct strategies needed to harness heterogeneous system architectures and exploit special purpose devices when and as appropriate. This is likely to be a major thrust area for next generation systems, and this year has seen much tool building and early user acceptance.

Within the US multiple Federal agencies have undertaken detailed studies of the design factors for exascale systems likely to be deployed by the end of the next decade, but potentially looking (and feeling) much different from today’s early petaflops machines. By the way, this is not a universally held view with many experts confident that incremental advances built on top of contemporary techniques will be adequate to expand system capability three orders of magnitude. DOE, after its sequence of three “town hall meetings,” is now undertaking a series of focused exascale workshops on application domains and systems issues. DOE’s Institute for Advanced Architecture and Algorithms (IAA) has a stated goal of engaging in pursuits towards realizing effective exascale performance. DARPA has sponsored three studies in exascale technology, software, and resilience performed by leaders in the field.

The NSF is sponsoring five universities (UIUC, UT-Austin, LSU, USC, and Un. of Delaware) to conduct a two-year exascale point design study for a first-look in-depth study of one possible system stack from programming models through runtime and OS, to system and core architectures. And the international community has undertaken IESP, the International exascale Software Project, to bring world-wide expertise to the very challenging prospect of programming and managing exascale systems through a future software stack.

HPCwire: Today’s exotically large systems are comprised of many technologies. We have multicore processors by the tens of thousands, and in some cases machines that lock together many different kinds of processors to reach high levels of performance. Do we know how to program these machines effectively enough to justify the expense of building them? Asked another way, is the skills vector of the HPC applications crowd and tools vendors pointing in the direction of increasingly efficacious use of these systems?

Sterling: Historically, this has always been a challenge. While HPL efficiencies have readily ranged from the 60 to 80 percentiles and more, real-world applications in many cases have exhibited single-digit efficiencies. User programming methodologies have required close attention to details of allocation and scheduling, with the mitigating value of libraries that have amortized the efforts of a few across the needs of the many, when appropriate.

The software has always lagged the hardware. With HPC in a phase change it is clear that software will be a combination of conventional methods forced in to increasingly ill-fitting roles, and possible new methods that either are crafted to reflect the high degree of multicore parallelism and heterogeneous structures or hide these low level details from the users, relying instead on advanced runtime systems. Curiously even when techniques have been available such as hierarchies of MPI with OpenMP combined with CUDA we don’t find wide usage, in part because of lack of portability.

A strong preference for a more unified model is demonstrated after the transient experimentation has damped out. PGAS languages like UPC, widely referred to, nonetheless outside of a narrow community have not developed a strong user code base, although it is a success in the service it has achieved. We have yet to fully understand the potential impact of the HPCS languages Chapel and X10. My concerns are the ability through programming, runtime, OS, and even architecture means to address the challenges of starvation, latency, overhead, and waiting for contention (SLOW), innate reliability in the presence of faults, and active power-aware management.

With the need for billion-way parallelism is less than ten years, I believe that a new model of computation will have to be devised and adopted to facilitate the co-design of all system layers, both hardware and software. This will require a new set of skills and tools including those that will permit seamless transition of legacy codes on new generation machines. But we have made this kind of transition before during past HPC phase changes. I am sanguine that we can do so again. With the encroachment of atomic granularity, Boltzmann’s constant, and the speed of light as we approach nano-scale technology, this may be the last time we will have to experience such a change. But history shows that any such pronouncement ultimately proves silly as disciplines so constrained ultimately jump S-curves to entirely new paradigms.

HPCwire: Should we abandon the building of very large machines today out of commodity components (cheap, but hard to manage and use) in favor of machines that are more suited to supercomputing tasks (expensive, but easier to manage and use)? If we should, could we conceivably do this, or has the ship sailed on the days of custom HPC?

Sterling: I expect that ultimately we will continue to build very large machines from commodity components, but they will not be based on today’s conventional parts.

The problems facing the HPC community — such as multicore, accelerators, power consumption, and reliability — are as important to the commercial markets (including embedded processors, mobile computing, the financial markets, search engines, etc.) as they are to us. They will demand architectures very different from current cores found in workstations, enterprise servers, clusters, and MPPs. It is likely that the HPC community will explore these issues first in most cases, and that trickle-bounce will migrate these technology solutions to the commercial manufacturers which, through economy of scale, will return them as commodity parts back to the HPC system vendors.

Again, this is not the mainstream view, but I expect processors to take two distinct forms: embedded memory processors (sometimes referred to as PIM) and streaming architectures with high density arithmetic unit arrays to address the disparate temporal locality properties exhibited by different parts of computations. Stanford’s Merrimac and UT-Austin’s TRIPS architectures are examples of such streaming processors. The USC DIVA architecture is one example of an embedded memory processor. These will greatly reduce the energy per operation and provide possible the best efficiencies of which the technologies are capable. So YES; we will use commodity components, but they won’t be descended from today’s commodity components.

HPCwire: Do the failure of SiCortex, SGI, Quadrics, and Woven in this quarter (!) tell us something about the fundamental nature of HPC and its customers, or is this just the confluence of brittle business models and a bad economy from which no broader lessons are to be learned?

Sterling: It’s important to define our meaning of the term “failure” in each case as they differ, and indeed are likely to be perceived differently between observers as well. The vast majority of system technology vendors have experienced measurable reduction in revenues, especially measured against engineering and marketing staff. Clearly, these companies shared the unfortunate experience of having not survived as independent viable businesses in a difficult financial market where cash reserves and market share were insufficient to ride out the prevailing conditions.

Quadrics suffered from an industry-wide shift in system area networking adopting de facto standards of Ethernet and InfiniBand; in some sense becoming obsolete. SGI has struggled for years offering unique technology, but with insufficient value-added to the broad high end market. I have long felt that if SGI had been more aggressive incorporating latency-hiding technology, as well as low overhead shared address space capability, that they could have delivered a truly remarkable system: a scalable shared memory multiple thread system in which user productivity would be greatly enhanced and user application execution less sensitive to locality. In a sense they did only half the job, requiring programmers explicitly manage data and control locality. As a consequence the relative advantage over the use of distributed memory systems was constrained. But the cost of design and manufacture was burdened with these additional technical challenges including scaling.

SiCortex was my biggest disappointment. Their product was well-engineered and moderately innovative, delivering a dense package with very low power and good performance to cost. They controlled their ASIC and network firmware which gave them and their partners surprising opportunities for future advances. They had multiple years of reasonable growth and had achieved that rare buzz in the community that most marketing departments crave but never attain. I fear that the HPC community overall has lost an opportunity here and that we may prove to be even more conservative in our future enterprises than we have been in the recent past.

But one struggles from this experience to learn from it. The market is largely on hold except for critical purchases. It is easy to defer procurements two or more quarters for replacement systems, especially when one is paying for peak capability rather than sustained capacity as is the case for some high-end HPC acquisitions. At the risk of over simplifying, there are two kinds of HPC products: 1) those that deliver conventional services and capability at best cost and power, and 2) those that offer unique capabilities through innovation that contribute to user opportunity and market demand. SGI and Quadrics both attempted to fall within the latter category. But the value added was not broadly sufficient to garner adequate market share. SiCortex fell in to the former category and was a victim of the difference not being big enough fast enough in a tough financial time. I’m still waiting to see what’s going to happen in this case.

HPCwire: When it comes to the exaflops machines of the next decade, can we continue on the current technology vector that gave us petaflops, or do we need to start over? If we do need to start over, will we?

Sterling: This is a controversial question with room for a broad array of opinions. Mine is not representative of the mainstream which anticipates a sequence of incremental steps culminating in a practical exascale capable system before the end of the next decade.

I have participated in multiple DOE exascale meetings, two DARPA exascale studies, the International Exascale Software Project (IESP), and the NSF sponsored Exascale Point Design Study. I have come to truly appreciate the hurdles with which exascale is confronted in power, reliability, scalability, and programmability, even if Moore’s Law delivers on 10 nanometer feature size towards the end of the next decade along with optical chip-to-chip communication.

As I have suggested above, the core architectures are going to have to change to address these problems. Much of the ever-popular speculative execution techniques will be greatly reduced or eliminated due to power concerns. Locality and communications management will also be different for the same reason along with reliability (which also impacts power). But in addition, two major system-wide changes will occur driven by programmability and efficiency issues: global address space and message-driven computation. Both concepts have a long tradition in the HPC research community, but have not migrated to commercial systems (CRI T3E is certainly an exception). We are seeing now strong interest in various global address schemes, but users still program on scalable systems primarily with distributed memory models. Various message-driven models including actors, dataflow, the J-machine, and active messages have been explored allowing new methods of managing parallelism, but they have not migrated to the mainstream except in very coarse grain methods like remote procedure calls for web services and grid-like applications.

Architecture support will be critical, as will dynamic runtime system support, to enable this new mechanism, and programming models and methods will have to make this capability available to users either explicitly (not preferred) or implicitly (may not be possible). One area where this will have a big impact is in the domain of dynamic graph applications for informatics problems, which are becoming of increasing interest. I am expecting we will see these mechanisms and strategies serve as the new foundation for future exascale systems driven by need and opportunity.


Dr. Thomas Sterling is a Professor of Computer Science at Louisiana State University, a Faculty Associate at California Institute of Technology, and a Distinguished Visiting Scientist at Oak Ridge National Laboratory. He received his Ph.D as a Hertz Fellow from MIT in 1984. He is probably best known as the father of Beowulf clusters and for his research on petaflops computing architecture. Professor Sterling is the co-author of six books and holds six patents. He was awarded the Gordon Bell Prize with collaborators in 1997.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This