Heterogeneous Processing: Trite or Trend?

By Dr. Vincent Natoli

June 24, 2009

Heterogeneous processing or co-processing on chips other than the CPU is the most recent trend in HPC. To some extent there has always been a small fringe element pursuing this direction, but as recently as a few years ago, a colleague claiming to be coding a GPU for physics or chemistry calculations would have been politely avoided. Programming FPGAs in strange hardware languages was even more far-fetched.

In the past few years, however, there has been a rich diversity of efforts and support from major HPC vendors. This year brings at least two conferences focused on heterogeneous computing: The Symposium on Application Accelerators in HPC (SAAHPC09, U. Illinois-Urbana, July 28-30) and the CECAM workshop “Algorithmic Re-Engineering for Modern Non-Conventional Processing Units” (Lugano, Sept. 30-Oct. 2). Several other meetings are dedicated to one type or another of specific co-processing approaches.

The most prominent examples of heterogeneous elements and efforts in HPC include the rapidly growing GPU computing community supported by NVIDIA and AMD/ATI and reconfigurable computing on field programmable gate arrays (FPGAs). C-based APIs, such as CUDA put out by NVIDIA, have opened up GPU computing to a much wider audience. Other examples include the IBM Cell chip and ASICs, such as those available from ClearSpeed, as well as soon to be released chips with built-in heterogeneous elements, such as Intel’s Larabee and AMD’s Fusion.

As more HPC practitioners are adopting these platforms today, many organizations are now taking a second look and evaluating them for their needs. Companies, university departments and government agencies want to know if heterogeneous processing is another fleeting trend or a real, sustainable technology transition driven by long-developing forces. The questions organizations are asking are: Will heterogeneous processing be an integral part of future HPC? Is it here to stay? To attempt an answer it’s useful to consider the recent past of HPC that has been characterized by a move to computing on large clusters of commodity chips.

Recent Trends in HPC

The share of the TOP500 machines using x86 programmable machines progressed from negligible in 1999 to roughly 90 percent in 2009, the balance comprised mainly of IBM Power. The numbers for cluster architectures versus MPP and others show the same development. The progression toward HPC computing on large clusters of commodity computing has had many positive impacts, providing great price/performance ratios and a large pool of qualified programmers by pushing affordable and scalable technology down to the department level. While clock speed increased reliably HPC practitioners were willing to turn a blind eye to the deficiencies of commodity solutions; happy to type make on their new platforms and see a doubling of performance every two years. The party ended in 2004, however, when clock speeds began to stall and the problems of HPC commodity computing became more salient, especially the memory wall (further reading here and here) and the divergence problem.

The story of power dissipation and the saturation of CPU clock speed is by now well known in HPC. With more silicon area available and the inability to jack up clock speed further, CPU vendors did what any clever vendor would do — provide more of their key product on die. At Intel it was called “the right hand turn” and it began to show effect in the market in 2004. Before 2004 data from the TOP500 list shows that FLOP performance improved at a healthy factor of 1.8 per year with 1.4 from improved clock and 1.3 from simply having a bigger machine. Plotting machine size against time shows a clear inflection point around 2004 after which machines have mainly improved performance and kept on trend by using more and more cores for processing. The multicore transition started with two cores, is currently at four and six cores, and will soon move to eight cores and higher.

Problems with Commodity HPC

The truth though is that many — in fact, most — HPC codes don’t scale well past 16 processors at least in their current form. In a world where performance can only be improved by use of more cores this is not great news. In short, commodity trends have led to great capacity solutions but not capability systems. Seymour Cray stated it succinctly as “If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?” Clearly one of the seminal influences on HPC and supercomputing preferred oxen to chickens, but the HPC menu appears to favor poultry at the moment.

The recent percolation in the market of heterogeneous or co-processing solutions may be viewed as a response to this capacity/capability gap and the opportunity to use the new silicon area offered by Moore’s law for something other than CPU cores. Once programmers understand multi-level parallelism is required or they reach the scaling limits of their problem, adopting a novel platform to achieve more performance does not seem unreasonable.

The Landscape of Heterogeneous Processing

The landscape of Heterogeneous HPC can be viewed as a continuum when parallelism is plotted along the horizontal axis and core complexity along the vertical (see figure below). At the extremes, CPUs are moderately parallel (2 to 4 cores) but highly complex while FPGAs are massively parallel with hundreds of thousands of very simple processing elements. GPUs and others heterogeneous elements fall in between. It’s interesting to note that multicores are moving down and to the right in this chart with more, simpler cores; an evolutionary approach advocated by the Berkeley report on parallel computing, while FPGAs may be moving up and to the left by including more specialized hard-cores such as DSP blocks. There is no reason to believe a-priori that all applications will map optimally to a CPU architecture. Additionally, the relative complexity of writing codes for each platform needs to be considered.
Complexity Parallelism Chart

Our experience has been that development times for CPU:GPU:FPGA are roughly 1:1.25:3 for the same algorithm. This assumes a full-up parallel CPU optimization using low-level parallelism (SSE) and high-level parallelism (MPI) on the CPU, a CUDA implementation on the GPU and HDL coding for the FPGA by skilled programmers. When does it make sense to implement heterogeneous solutions? Key considerations are how well your algorithm maps to the platform and the operational use case.

Choosing Your Co-Processor

CPUs are obviously the default platform of choice with great clock speed, the ability to handle branching well and relatively easy coding. If your algorithm has a lot of branching and can’t be cast in a streaming or SIMD type formulation, CPUs are your best choice. If your algorithm is a floating point SIMD type problem that can be divided up into many independent threads doing the same operations on different data, GPUs may be a good choice. GPU programming is slightly more complicated than the full-up CPU optimization. It sometimes requires recasting the problem and the cache, or shared memory must be manually managed to achieve performance. If your problem is mainly integer or fixed point, can be cast into a streaming form, has non-traditional data representations and is spatially parallel, that is, able to be written as many independent calculation pipes, FPGAs may be an excellent choice.

Another consideration is the operational mode of your application. Is it under constant development or does development proceed for a time with long operational periods that follow in which the code is essentially run 24/7 in production mode? The latter situation justifies the cost required to port code to a heterogeneous platform and invest in the required hardware since it will be balanced by higher performance and lower operational power consumption per flop.

The Need for Speed

There are a few ways that high performance is actually achieved and they are nicely and symmetrically summarized by both space and time considerations. (This is particularly satisfying for a physicist.) Performance is achieved temporally by 1) operating on data faster with a higher clock speed and 2) implementing temporal parallelism (deep pipelines) for concurrence in time; and spatially by 1) moving data faster and 2) implementing spatial parallelism for concurrence in space (multiple parallel threads). Heterogeneous platforms differ by their relative strengths and weaknesses in one or more of these areas.

Summary

Seen in the context of the decided move to on-chip parallelism and the limits of computing on large clusters of commodity chips, heterogeneous co-processing fills a market gap that is not soon to disappear. Developers today are confronted with multi-level parallelism that spans the domain, process, thread and even the bit level in their traditional CPU-based systems. Confronted with this complexity and the requirements for better performance, they are considering alternate uses of the silicon in non-traditional platforms — GPUs, FPGAs and ASICs — to achieve their requirements.

About the Author
Dr. Vincent NatoliDr. Natoli is the president and founder of Stone Ridge Technology. He is a computational physicist with 20 years experience in the field of high performance computing. He worked as a technical director at High Performance Technologies (HPTi) and before that for 10 years as a senior physicist at ExxonMobil Corporation, at their Corporate Research Lab in Clinton, New Jersey, and in the Upstream Research Center in Houston, Texas. Dr. Natoli holds Bachelor’s and Master’s degrees from MIT, a PhD in Physics from the University of Illinois Urbana-Champaign, and a Masters in Technology Management from the University of Pennsylvania and the Wharton School. Stone Ridge Technology is a professional services firm focused on authoring, profiling, optimizing and porting high performance technical codes to multicore CPUs, GPUs, and FPGAs.

Dr. Natoli can be reached at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This