Heterogeneous Processing: Trite or Trend?

By Dr. Vincent Natoli

June 24, 2009

Heterogeneous processing or co-processing on chips other than the CPU is the most recent trend in HPC. To some extent there has always been a small fringe element pursuing this direction, but as recently as a few years ago, a colleague claiming to be coding a GPU for physics or chemistry calculations would have been politely avoided. Programming FPGAs in strange hardware languages was even more far-fetched.

In the past few years, however, there has been a rich diversity of efforts and support from major HPC vendors. This year brings at least two conferences focused on heterogeneous computing: The Symposium on Application Accelerators in HPC (SAAHPC09, U. Illinois-Urbana, July 28-30) and the CECAM workshop “Algorithmic Re-Engineering for Modern Non-Conventional Processing Units” (Lugano, Sept. 30-Oct. 2). Several other meetings are dedicated to one type or another of specific co-processing approaches.

The most prominent examples of heterogeneous elements and efforts in HPC include the rapidly growing GPU computing community supported by NVIDIA and AMD/ATI and reconfigurable computing on field programmable gate arrays (FPGAs). C-based APIs, such as CUDA put out by NVIDIA, have opened up GPU computing to a much wider audience. Other examples include the IBM Cell chip and ASICs, such as those available from ClearSpeed, as well as soon to be released chips with built-in heterogeneous elements, such as Intel’s Larabee and AMD’s Fusion.

As more HPC practitioners are adopting these platforms today, many organizations are now taking a second look and evaluating them for their needs. Companies, university departments and government agencies want to know if heterogeneous processing is another fleeting trend or a real, sustainable technology transition driven by long-developing forces. The questions organizations are asking are: Will heterogeneous processing be an integral part of future HPC? Is it here to stay? To attempt an answer it’s useful to consider the recent past of HPC that has been characterized by a move to computing on large clusters of commodity chips.

Recent Trends in HPC

The share of the TOP500 machines using x86 programmable machines progressed from negligible in 1999 to roughly 90 percent in 2009, the balance comprised mainly of IBM Power. The numbers for cluster architectures versus MPP and others show the same development. The progression toward HPC computing on large clusters of commodity computing has had many positive impacts, providing great price/performance ratios and a large pool of qualified programmers by pushing affordable and scalable technology down to the department level. While clock speed increased reliably HPC practitioners were willing to turn a blind eye to the deficiencies of commodity solutions; happy to type make on their new platforms and see a doubling of performance every two years. The party ended in 2004, however, when clock speeds began to stall and the problems of HPC commodity computing became more salient, especially the memory wall (further reading here and here) and the divergence problem.

The story of power dissipation and the saturation of CPU clock speed is by now well known in HPC. With more silicon area available and the inability to jack up clock speed further, CPU vendors did what any clever vendor would do — provide more of their key product on die. At Intel it was called “the right hand turn” and it began to show effect in the market in 2004. Before 2004 data from the TOP500 list shows that FLOP performance improved at a healthy factor of 1.8 per year with 1.4 from improved clock and 1.3 from simply having a bigger machine. Plotting machine size against time shows a clear inflection point around 2004 after which machines have mainly improved performance and kept on trend by using more and more cores for processing. The multicore transition started with two cores, is currently at four and six cores, and will soon move to eight cores and higher.

Problems with Commodity HPC

The truth though is that many — in fact, most — HPC codes don’t scale well past 16 processors at least in their current form. In a world where performance can only be improved by use of more cores this is not great news. In short, commodity trends have led to great capacity solutions but not capability systems. Seymour Cray stated it succinctly as “If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?” Clearly one of the seminal influences on HPC and supercomputing preferred oxen to chickens, but the HPC menu appears to favor poultry at the moment.

The recent percolation in the market of heterogeneous or co-processing solutions may be viewed as a response to this capacity/capability gap and the opportunity to use the new silicon area offered by Moore’s law for something other than CPU cores. Once programmers understand multi-level parallelism is required or they reach the scaling limits of their problem, adopting a novel platform to achieve more performance does not seem unreasonable.

The Landscape of Heterogeneous Processing

The landscape of Heterogeneous HPC can be viewed as a continuum when parallelism is plotted along the horizontal axis and core complexity along the vertical (see figure below). At the extremes, CPUs are moderately parallel (2 to 4 cores) but highly complex while FPGAs are massively parallel with hundreds of thousands of very simple processing elements. GPUs and others heterogeneous elements fall in between. It’s interesting to note that multicores are moving down and to the right in this chart with more, simpler cores; an evolutionary approach advocated by the Berkeley report on parallel computing, while FPGAs may be moving up and to the left by including more specialized hard-cores such as DSP blocks. There is no reason to believe a-priori that all applications will map optimally to a CPU architecture. Additionally, the relative complexity of writing codes for each platform needs to be considered.
Complexity Parallelism Chart

Our experience has been that development times for CPU:GPU:FPGA are roughly 1:1.25:3 for the same algorithm. This assumes a full-up parallel CPU optimization using low-level parallelism (SSE) and high-level parallelism (MPI) on the CPU, a CUDA implementation on the GPU and HDL coding for the FPGA by skilled programmers. When does it make sense to implement heterogeneous solutions? Key considerations are how well your algorithm maps to the platform and the operational use case.

Choosing Your Co-Processor

CPUs are obviously the default platform of choice with great clock speed, the ability to handle branching well and relatively easy coding. If your algorithm has a lot of branching and can’t be cast in a streaming or SIMD type formulation, CPUs are your best choice. If your algorithm is a floating point SIMD type problem that can be divided up into many independent threads doing the same operations on different data, GPUs may be a good choice. GPU programming is slightly more complicated than the full-up CPU optimization. It sometimes requires recasting the problem and the cache, or shared memory must be manually managed to achieve performance. If your problem is mainly integer or fixed point, can be cast into a streaming form, has non-traditional data representations and is spatially parallel, that is, able to be written as many independent calculation pipes, FPGAs may be an excellent choice.

Another consideration is the operational mode of your application. Is it under constant development or does development proceed for a time with long operational periods that follow in which the code is essentially run 24/7 in production mode? The latter situation justifies the cost required to port code to a heterogeneous platform and invest in the required hardware since it will be balanced by higher performance and lower operational power consumption per flop.

The Need for Speed

There are a few ways that high performance is actually achieved and they are nicely and symmetrically summarized by both space and time considerations. (This is particularly satisfying for a physicist.) Performance is achieved temporally by 1) operating on data faster with a higher clock speed and 2) implementing temporal parallelism (deep pipelines) for concurrence in time; and spatially by 1) moving data faster and 2) implementing spatial parallelism for concurrence in space (multiple parallel threads). Heterogeneous platforms differ by their relative strengths and weaknesses in one or more of these areas.

Summary

Seen in the context of the decided move to on-chip parallelism and the limits of computing on large clusters of commodity chips, heterogeneous co-processing fills a market gap that is not soon to disappear. Developers today are confronted with multi-level parallelism that spans the domain, process, thread and even the bit level in their traditional CPU-based systems. Confronted with this complexity and the requirements for better performance, they are considering alternate uses of the silicon in non-traditional platforms — GPUs, FPGAs and ASICs — to achieve their requirements.

About the Author
Dr. Vincent NatoliDr. Natoli is the president and founder of Stone Ridge Technology. He is a computational physicist with 20 years experience in the field of high performance computing. He worked as a technical director at High Performance Technologies (HPTi) and before that for 10 years as a senior physicist at ExxonMobil Corporation, at their Corporate Research Lab in Clinton, New Jersey, and in the Upstream Research Center in Houston, Texas. Dr. Natoli holds Bachelor’s and Master’s degrees from MIT, a PhD in Physics from the University of Illinois Urbana-Champaign, and a Masters in Technology Management from the University of Pennsylvania and the Wharton School. Stone Ridge Technology is a professional services firm focused on authoring, profiling, optimizing and porting high performance technical codes to multicore CPUs, GPUs, and FPGAs.

Dr. Natoli can be reached at vnatoli@stoneridgetechnology.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This