Heterogeneous Processing: Trite or Trend?

By Dr. Vincent Natoli

June 24, 2009

Heterogeneous processing or co-processing on chips other than the CPU is the most recent trend in HPC. To some extent there has always been a small fringe element pursuing this direction, but as recently as a few years ago, a colleague claiming to be coding a GPU for physics or chemistry calculations would have been politely avoided. Programming FPGAs in strange hardware languages was even more far-fetched.

In the past few years, however, there has been a rich diversity of efforts and support from major HPC vendors. This year brings at least two conferences focused on heterogeneous computing: The Symposium on Application Accelerators in HPC (SAAHPC09, U. Illinois-Urbana, July 28-30) and the CECAM workshop “Algorithmic Re-Engineering for Modern Non-Conventional Processing Units” (Lugano, Sept. 30-Oct. 2). Several other meetings are dedicated to one type or another of specific co-processing approaches.

The most prominent examples of heterogeneous elements and efforts in HPC include the rapidly growing GPU computing community supported by NVIDIA and AMD/ATI and reconfigurable computing on field programmable gate arrays (FPGAs). C-based APIs, such as CUDA put out by NVIDIA, have opened up GPU computing to a much wider audience. Other examples include the IBM Cell chip and ASICs, such as those available from ClearSpeed, as well as soon to be released chips with built-in heterogeneous elements, such as Intel’s Larabee and AMD’s Fusion.

As more HPC practitioners are adopting these platforms today, many organizations are now taking a second look and evaluating them for their needs. Companies, university departments and government agencies want to know if heterogeneous processing is another fleeting trend or a real, sustainable technology transition driven by long-developing forces. The questions organizations are asking are: Will heterogeneous processing be an integral part of future HPC? Is it here to stay? To attempt an answer it’s useful to consider the recent past of HPC that has been characterized by a move to computing on large clusters of commodity chips.

Recent Trends in HPC

The share of the TOP500 machines using x86 programmable machines progressed from negligible in 1999 to roughly 90 percent in 2009, the balance comprised mainly of IBM Power. The numbers for cluster architectures versus MPP and others show the same development. The progression toward HPC computing on large clusters of commodity computing has had many positive impacts, providing great price/performance ratios and a large pool of qualified programmers by pushing affordable and scalable technology down to the department level. While clock speed increased reliably HPC practitioners were willing to turn a blind eye to the deficiencies of commodity solutions; happy to type make on their new platforms and see a doubling of performance every two years. The party ended in 2004, however, when clock speeds began to stall and the problems of HPC commodity computing became more salient, especially the memory wall (further reading here and here) and the divergence problem.

The story of power dissipation and the saturation of CPU clock speed is by now well known in HPC. With more silicon area available and the inability to jack up clock speed further, CPU vendors did what any clever vendor would do — provide more of their key product on die. At Intel it was called “the right hand turn” and it began to show effect in the market in 2004. Before 2004 data from the TOP500 list shows that FLOP performance improved at a healthy factor of 1.8 per year with 1.4 from improved clock and 1.3 from simply having a bigger machine. Plotting machine size against time shows a clear inflection point around 2004 after which machines have mainly improved performance and kept on trend by using more and more cores for processing. The multicore transition started with two cores, is currently at four and six cores, and will soon move to eight cores and higher.

Problems with Commodity HPC

The truth though is that many — in fact, most — HPC codes don’t scale well past 16 processors at least in their current form. In a world where performance can only be improved by use of more cores this is not great news. In short, commodity trends have led to great capacity solutions but not capability systems. Seymour Cray stated it succinctly as “If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?” Clearly one of the seminal influences on HPC and supercomputing preferred oxen to chickens, but the HPC menu appears to favor poultry at the moment.

The recent percolation in the market of heterogeneous or co-processing solutions may be viewed as a response to this capacity/capability gap and the opportunity to use the new silicon area offered by Moore’s law for something other than CPU cores. Once programmers understand multi-level parallelism is required or they reach the scaling limits of their problem, adopting a novel platform to achieve more performance does not seem unreasonable.

The Landscape of Heterogeneous Processing

The landscape of Heterogeneous HPC can be viewed as a continuum when parallelism is plotted along the horizontal axis and core complexity along the vertical (see figure below). At the extremes, CPUs are moderately parallel (2 to 4 cores) but highly complex while FPGAs are massively parallel with hundreds of thousands of very simple processing elements. GPUs and others heterogeneous elements fall in between. It’s interesting to note that multicores are moving down and to the right in this chart with more, simpler cores; an evolutionary approach advocated by the Berkeley report on parallel computing, while FPGAs may be moving up and to the left by including more specialized hard-cores such as DSP blocks. There is no reason to believe a-priori that all applications will map optimally to a CPU architecture. Additionally, the relative complexity of writing codes for each platform needs to be considered.
Complexity Parallelism Chart

Our experience has been that development times for CPU:GPU:FPGA are roughly 1:1.25:3 for the same algorithm. This assumes a full-up parallel CPU optimization using low-level parallelism (SSE) and high-level parallelism (MPI) on the CPU, a CUDA implementation on the GPU and HDL coding for the FPGA by skilled programmers. When does it make sense to implement heterogeneous solutions? Key considerations are how well your algorithm maps to the platform and the operational use case.

Choosing Your Co-Processor

CPUs are obviously the default platform of choice with great clock speed, the ability to handle branching well and relatively easy coding. If your algorithm has a lot of branching and can’t be cast in a streaming or SIMD type formulation, CPUs are your best choice. If your algorithm is a floating point SIMD type problem that can be divided up into many independent threads doing the same operations on different data, GPUs may be a good choice. GPU programming is slightly more complicated than the full-up CPU optimization. It sometimes requires recasting the problem and the cache, or shared memory must be manually managed to achieve performance. If your problem is mainly integer or fixed point, can be cast into a streaming form, has non-traditional data representations and is spatially parallel, that is, able to be written as many independent calculation pipes, FPGAs may be an excellent choice.

Another consideration is the operational mode of your application. Is it under constant development or does development proceed for a time with long operational periods that follow in which the code is essentially run 24/7 in production mode? The latter situation justifies the cost required to port code to a heterogeneous platform and invest in the required hardware since it will be balanced by higher performance and lower operational power consumption per flop.

The Need for Speed

There are a few ways that high performance is actually achieved and they are nicely and symmetrically summarized by both space and time considerations. (This is particularly satisfying for a physicist.) Performance is achieved temporally by 1) operating on data faster with a higher clock speed and 2) implementing temporal parallelism (deep pipelines) for concurrence in time; and spatially by 1) moving data faster and 2) implementing spatial parallelism for concurrence in space (multiple parallel threads). Heterogeneous platforms differ by their relative strengths and weaknesses in one or more of these areas.

Summary

Seen in the context of the decided move to on-chip parallelism and the limits of computing on large clusters of commodity chips, heterogeneous co-processing fills a market gap that is not soon to disappear. Developers today are confronted with multi-level parallelism that spans the domain, process, thread and even the bit level in their traditional CPU-based systems. Confronted with this complexity and the requirements for better performance, they are considering alternate uses of the silicon in non-traditional platforms — GPUs, FPGAs and ASICs — to achieve their requirements.

About the Author
Dr. Vincent NatoliDr. Natoli is the president and founder of Stone Ridge Technology. He is a computational physicist with 20 years experience in the field of high performance computing. He worked as a technical director at High Performance Technologies (HPTi) and before that for 10 years as a senior physicist at ExxonMobil Corporation, at their Corporate Research Lab in Clinton, New Jersey, and in the Upstream Research Center in Houston, Texas. Dr. Natoli holds Bachelor’s and Master’s degrees from MIT, a PhD in Physics from the University of Illinois Urbana-Champaign, and a Masters in Technology Management from the University of Pennsylvania and the Wharton School. Stone Ridge Technology is a professional services firm focused on authoring, profiling, optimizing and porting high performance technical codes to multicore CPUs, GPUs, and FPGAs.

Dr. Natoli can be reached at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This