A Trio of HPC Offerings Unveiled at ISC

By Michael Feldman

July 1, 2009

Last week’s International Supercomputing Conference (ISC’09) was a convenient excuse for vendors to announce a raft of new products, but three, in particular, stood out. Storage vendor DataDirect Networks (DDN) launched its new “Storage Fusion Architecture” that gives it an IOPS story; Mellanox jumped into the InfiniBand switch and fabric management business in a big way; and PGI released its first C and Fortran compilers with support for GPU acceleration.

DataDirect Does IOPS

DataDirect Network’s historical leadership in high throughput storage has kept it atop the supercomputing world. Today, eight of the top 10 systems use DDN gear, including the petaflop-capable Jaguar supercomputer at Oak Ridge National Lab. Storage demand continues to grow in HPC, but it’s growing even faster in other areas like Web services and media content.

With that in mind, DDN is looking to tap into a bigger slice of that market with a revamped architecture. In truth, DataDirect has already begun this transition. According to DDN senior director of product management Josh Goldenhar, the revenue breakdown for the company is now 45 percent HPC, 30 percent rich media, and most of the remainder Web 2.0 type applications.

With its next-generation storage platform, called Storage Fusion Architecture (SFA), the company is looking to add a high performance random access capability on top of high performance throughput, the idea being that I/O per second (IOPS) is the critical metric for all this unstructured data that is spreading across the storage landscape. Even in HPC, high IOPS is becoming a necessity. Multicore computing means structured data access is becoming randomized, since I/O now tends to be performed across multiple threads. In particular, metadata is becoming the choke point for large clustered file systems since it tends to be accessed randomly.

The SFA design is based on a controller couplet pair that can support up to 1,200 disk drives, which can be a mix of SATA, SAS, and SSD devices. That mean that with the new 2 TB SATA drives, a single controller pair can drive 2.4 petabytes of storage.

Data throughput for a single controller is 10 GB/second — significantly better than the 6 GB/second provided by the current generation S2A design. But the real story is the IOPS. An SFA controller can deliver up to 1 million IOPS to cache storage and 300 thousand IOPS to disk. The high disk IOPS will be especially important to users who want to get the most out of attached SSD devices, which support much faster read/write speeds than their spinning brethren.

The SFA controller hardware itself is very different from the current generation S2A technology. DDN has made the jump to a CPU-based architecture (in this case Intel Nehalem), dumping the FPGAs it relied on in previous generations. By doing this, the company is able to take advantage of standard x86 technology, PCIe Gen2, and DDR3 memory. Part of the memory (16 GB) is used for storage cache, which is why DDN was able to achieve such high rates of cache IOPS. Perhaps more importantly, the standard platform will allow DDN to create new features much more easily than on an FPGA-based platform. “We are poised to take advantage of the very same advances in CPU technology that have been aiding our clients, in the storage itself, with a completely multithreaded storage engine under the covers,” said Goldenhar.

Early SFA products are in customer trials in California and Europe, with general availability scheduled for September.

Mellanox Adds Big InfiniBand Switches, Fabric Management Software

Also at ISC, Mellanox Technologies launched its first director-class InfiniBand switches and fabric management suite. The IS5000 modular switches support from 108 to 648 QDR ports and are paired with the company’s new FabricIT management software to support large scaled-out clusters comprised of thousand or tens of thousands of nodes. The IS5000 is a true modular architecture: the platform makes use of common leaf and spine components, as well as interchangeable power supplies and fans. Mellanox has also added a new 36-port fixed switch, which is able to support the fabric management software. The older 36-port MTS3600 switch was externally managed since it lacked a CPU.

With Mellanox’s expanded portfolio, the InfiniBand switch and fabric management space is starting to look ever more crowded. The other InfiniBand players — Voltaire, QLogic and Sun Microsystems — have all recently introduced QDR director-class switches of their own. QLogic has the largest general-purpose switch to date, with up to 864 ports; the other three vendors top out at 648 ports (not including the 3,456-port Magnum switch Sun reserves for Constellation supers).

As Mellanox has moved up the food chain, the situation has become a bit tricky. With the addition of a fully-populated switch portfolio, the company’s current partners — Sun and Voltaire — are ostensibly competitors. Mellanox provides its own InfiniBand chips to Sun and Voltaire, as well as using them natively. (QLogic also produces InfiniBand silicon, but keeps the technology in-house for its own products.) Although InfiniBand use is expanding, it’s not clear if there will be enough market space to support multiple vendors with similar offerings. According to John Monson, VP of marketing at Mellanox, vendors are carving out their own niches in the InfiniBand market with regard to vertical segments and server OEM relationships, and have different value propositions. “There’s plenty of room in the market for that competition, but there will be some overlap,” he admits.

With the addition of the director-class switches and the fabric management software to its traditional portfolio of host channel adapters, device silicon, gateways, and Ethernet product offerings, Mellanox has filled in its product set rather completely. The addition of the fabric management suite was a big step for the company. As InfiniBand use expands to less traditional HPC users and with increasing cluster sizes, ease of management will be much more important. And to the extent InfiniBand can make inroads into the enterprise and cloud computing realm, a fabric management capability becomes a must-have feature.

PGI Adds GPU Computing Support to Compilers

A year and a half ago, compiler vendor PGI (aka The Portland Group) came to the conclusion that heterogenous computing, via accelerators, would probably be the next big thing in technical computing, and began a strategy to support that model in its software tools. PGI Release 9.0 brings the first implementation of that work to fruition, with the support of NVIDIA GPUs for general-purpose computing via the company’s C and Fortran compilers.

Unless you’re brand new to HPC, you know that GPU computing has become the accelerator of choice on a range of HPC platforms — from personal workstations and small clusters to large supercomputers. Accelerating HPC applications with the latest GPUs can result in performance increases of one or two orders of magnitude compared to CPU-only execution. NVIDIA has largely been driving this new model, using its own CUDA development environment as the software platform.

Although CUDA source code is written in C, functionally it represents a rather low-level interface to GPU computing. PGI’s idea is to hide the GPU device management details of CUDA, and let the compiler generate GPU code directly from the C or Fortran application source. In practice though, this is not completely transparent to the developer. The model used by PGI is based on directives that the programmer must insert into the source code at the appropriate spots — similar to what’s done with OpenMP directives. The goal is to locate all the computationally-intensive portions of the code that can be parallelized on GPU hardware and direct the compiler to generate the low-level code. The most common directive is called ACC REGION. For example:

SUBROUTINE SAXPY (A,X,Y,N)
    INTEGER N
    REAL A,X(N),Y(N)
!$ACC REGION
    DO I = 1, N
       X(I) = A*X(I) + Y(I)
    ENDDO
 !$ACC END REGION
 END

The loop inside the ACC REGION will be parallelized by the compiler and the GPU code will be bundled into the executable file alongside the regular CPU code. At runtime the parallelized code will be downloaded to the GPU and executed natively, with all the data transfers to and from the device managed automatically. Under the covers, the compiler is employing CUDA as the low-level interface to do the device-specific work. Note that if a GPU is not detected, the runtime falls back to the CPU version of the code.

The directives are not the whole story. To squeeze maximum performance from the GPU, there is usually some source tweaking required in order to optimize the runtime behavior. The GPU memory system in particular is vastly different from the typical CPU, and the programmer must recognize that matching data to the on-board memory is going to boost performance. “The compiler is not magic,” explained Doug Miles, director of The Portland Group. “It can’t automatically detect, offload and optimize appropriate kernels. It can do a lot of the busywork. But the programmer is going to have to be in the loop.”

The first PGI implementation is Linux only and assumes an x86 CPU host with a CUDA-capable NVIDIA GPU. There are a few other limitations, mostly associated with the fact that CUDA is not really multi-GPU aware, so execution is currently limited to one GPU per application. PGI is also “investigating” a GPU implementation for AMD’s FireStream computing platform, but will need a working OpenCL implementation for that target.

The accelerator capability in the compilers is available at no charge until the end of 2009 for users with a working PGI Linux license. Starting in 2010, the acceleration features will require a license upgrade, with pricing to be determined. For more information, check out the FAQ on PGI’s Web site at http://www.pgroup.com/resources/accel.htm.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This