A Trio of HPC Offerings Unveiled at ISC

By Michael Feldman

July 1, 2009

Last week’s International Supercomputing Conference (ISC’09) was a convenient excuse for vendors to announce a raft of new products, but three, in particular, stood out. Storage vendor DataDirect Networks (DDN) launched its new “Storage Fusion Architecture” that gives it an IOPS story; Mellanox jumped into the InfiniBand switch and fabric management business in a big way; and PGI released its first C and Fortran compilers with support for GPU acceleration.

DataDirect Does IOPS

DataDirect Network’s historical leadership in high throughput storage has kept it atop the supercomputing world. Today, eight of the top 10 systems use DDN gear, including the petaflop-capable Jaguar supercomputer at Oak Ridge National Lab. Storage demand continues to grow in HPC, but it’s growing even faster in other areas like Web services and media content.

With that in mind, DDN is looking to tap into a bigger slice of that market with a revamped architecture. In truth, DataDirect has already begun this transition. According to DDN senior director of product management Josh Goldenhar, the revenue breakdown for the company is now 45 percent HPC, 30 percent rich media, and most of the remainder Web 2.0 type applications.

With its next-generation storage platform, called Storage Fusion Architecture (SFA), the company is looking to add a high performance random access capability on top of high performance throughput, the idea being that I/O per second (IOPS) is the critical metric for all this unstructured data that is spreading across the storage landscape. Even in HPC, high IOPS is becoming a necessity. Multicore computing means structured data access is becoming randomized, since I/O now tends to be performed across multiple threads. In particular, metadata is becoming the choke point for large clustered file systems since it tends to be accessed randomly.

The SFA design is based on a controller couplet pair that can support up to 1,200 disk drives, which can be a mix of SATA, SAS, and SSD devices. That mean that with the new 2 TB SATA drives, a single controller pair can drive 2.4 petabytes of storage.

Data throughput for a single controller is 10 GB/second — significantly better than the 6 GB/second provided by the current generation S2A design. But the real story is the IOPS. An SFA controller can deliver up to 1 million IOPS to cache storage and 300 thousand IOPS to disk. The high disk IOPS will be especially important to users who want to get the most out of attached SSD devices, which support much faster read/write speeds than their spinning brethren.

The SFA controller hardware itself is very different from the current generation S2A technology. DDN has made the jump to a CPU-based architecture (in this case Intel Nehalem), dumping the FPGAs it relied on in previous generations. By doing this, the company is able to take advantage of standard x86 technology, PCIe Gen2, and DDR3 memory. Part of the memory (16 GB) is used for storage cache, which is why DDN was able to achieve such high rates of cache IOPS. Perhaps more importantly, the standard platform will allow DDN to create new features much more easily than on an FPGA-based platform. “We are poised to take advantage of the very same advances in CPU technology that have been aiding our clients, in the storage itself, with a completely multithreaded storage engine under the covers,” said Goldenhar.

Early SFA products are in customer trials in California and Europe, with general availability scheduled for September.

Mellanox Adds Big InfiniBand Switches, Fabric Management Software

Also at ISC, Mellanox Technologies launched its first director-class InfiniBand switches and fabric management suite. The IS5000 modular switches support from 108 to 648 QDR ports and are paired with the company’s new FabricIT management software to support large scaled-out clusters comprised of thousand or tens of thousands of nodes. The IS5000 is a true modular architecture: the platform makes use of common leaf and spine components, as well as interchangeable power supplies and fans. Mellanox has also added a new 36-port fixed switch, which is able to support the fabric management software. The older 36-port MTS3600 switch was externally managed since it lacked a CPU.

With Mellanox’s expanded portfolio, the InfiniBand switch and fabric management space is starting to look ever more crowded. The other InfiniBand players — Voltaire, QLogic and Sun Microsystems — have all recently introduced QDR director-class switches of their own. QLogic has the largest general-purpose switch to date, with up to 864 ports; the other three vendors top out at 648 ports (not including the 3,456-port Magnum switch Sun reserves for Constellation supers).

As Mellanox has moved up the food chain, the situation has become a bit tricky. With the addition of a fully-populated switch portfolio, the company’s current partners — Sun and Voltaire — are ostensibly competitors. Mellanox provides its own InfiniBand chips to Sun and Voltaire, as well as using them natively. (QLogic also produces InfiniBand silicon, but keeps the technology in-house for its own products.) Although InfiniBand use is expanding, it’s not clear if there will be enough market space to support multiple vendors with similar offerings. According to John Monson, VP of marketing at Mellanox, vendors are carving out their own niches in the InfiniBand market with regard to vertical segments and server OEM relationships, and have different value propositions. “There’s plenty of room in the market for that competition, but there will be some overlap,” he admits.

With the addition of the director-class switches and the fabric management software to its traditional portfolio of host channel adapters, device silicon, gateways, and Ethernet product offerings, Mellanox has filled in its product set rather completely. The addition of the fabric management suite was a big step for the company. As InfiniBand use expands to less traditional HPC users and with increasing cluster sizes, ease of management will be much more important. And to the extent InfiniBand can make inroads into the enterprise and cloud computing realm, a fabric management capability becomes a must-have feature.

PGI Adds GPU Computing Support to Compilers

A year and a half ago, compiler vendor PGI (aka The Portland Group) came to the conclusion that heterogenous computing, via accelerators, would probably be the next big thing in technical computing, and began a strategy to support that model in its software tools. PGI Release 9.0 brings the first implementation of that work to fruition, with the support of NVIDIA GPUs for general-purpose computing via the company’s C and Fortran compilers.

Unless you’re brand new to HPC, you know that GPU computing has become the accelerator of choice on a range of HPC platforms — from personal workstations and small clusters to large supercomputers. Accelerating HPC applications with the latest GPUs can result in performance increases of one or two orders of magnitude compared to CPU-only execution. NVIDIA has largely been driving this new model, using its own CUDA development environment as the software platform.

Although CUDA source code is written in C, functionally it represents a rather low-level interface to GPU computing. PGI’s idea is to hide the GPU device management details of CUDA, and let the compiler generate GPU code directly from the C or Fortran application source. In practice though, this is not completely transparent to the developer. The model used by PGI is based on directives that the programmer must insert into the source code at the appropriate spots — similar to what’s done with OpenMP directives. The goal is to locate all the computationally-intensive portions of the code that can be parallelized on GPU hardware and direct the compiler to generate the low-level code. The most common directive is called ACC REGION. For example:

SUBROUTINE SAXPY (A,X,Y,N)
    INTEGER N
    REAL A,X(N),Y(N)
!$ACC REGION
    DO I = 1, N
       X(I) = A*X(I) + Y(I)
    ENDDO
 !$ACC END REGION
 END

The loop inside the ACC REGION will be parallelized by the compiler and the GPU code will be bundled into the executable file alongside the regular CPU code. At runtime the parallelized code will be downloaded to the GPU and executed natively, with all the data transfers to and from the device managed automatically. Under the covers, the compiler is employing CUDA as the low-level interface to do the device-specific work. Note that if a GPU is not detected, the runtime falls back to the CPU version of the code.

The directives are not the whole story. To squeeze maximum performance from the GPU, there is usually some source tweaking required in order to optimize the runtime behavior. The GPU memory system in particular is vastly different from the typical CPU, and the programmer must recognize that matching data to the on-board memory is going to boost performance. “The compiler is not magic,” explained Doug Miles, director of The Portland Group. “It can’t automatically detect, offload and optimize appropriate kernels. It can do a lot of the busywork. But the programmer is going to have to be in the loop.”

The first PGI implementation is Linux only and assumes an x86 CPU host with a CUDA-capable NVIDIA GPU. There are a few other limitations, mostly associated with the fact that CUDA is not really multi-GPU aware, so execution is currently limited to one GPU per application. PGI is also “investigating” a GPU implementation for AMD’s FireStream computing platform, but will need a working OpenCL implementation for that target.

The accelerator capability in the compilers is available at no charge until the end of 2009 for users with a working PGI Linux license. Starting in 2010, the acceleration features will require a license upgrade, with pricing to be determined. For more information, check out the FAQ on PGI’s Web site at http://www.pgroup.com/resources/accel.htm.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This