Wolfram Alpha: A Web-Based Application That Embraced Supercomputers

By Michael Feldman

July 9, 2009

It was less than two months ago that Wolfram Alpha launched and introduced the idea of a Web site for universal computation. Wolfram Alpha is based on Wolfram Research’s Mathematica, but uses it to drive a general-purpose computational engine that can be applied across more than a thousand knowledge domains.

The launch created quite a bit of fanfare in the media since Wolfram Alpha was seen (incorrectly) as a rival to search engines like Google and Yahoo. The new application also encapsulated the notion of the Semantic Web, which many envision as “the next big thing.” Add to that the fact that the Web site was built on top of supercomputers and you have all the ingredients for a juicy high-tech story for the masses.

The supercomputer infrastructure was one of the least talked about aspects of the project, but to our publication, one of the most interesting. Schoeller Porter, who now does business development for Wolfram Alpha, wrote about the pre-launch of the Web site in a recent blog post, and how the project outgrew the initial infrastructure plan even before it booted up.

According to Porter, whom I spoke with shortly after he wrote the blog entry, the project’s initial plan devised in February was to roll out Wolfram Alpha on a much smaller scale. The idea was they would make a discrete announcement in the Mathematica community, and users would trickle in. They were anticipating early traffic would be around 200 queries per second. For that kind of computing load, they would be able to get by with a few datacenters populated by modest-sized Web-style clusters — “normal servers you can buy off the shelf from anywhere,” said Porter.

Then in early March, Stephen Wolfram wrote a blog post announcing Wolfram Alpha and they started getting a lot more inquiries about the it. “It clearly hit a nerve in the Semantic Web community,” explained Porter. From that point on, they noticed that every time Wolfram gave a speech on the subject, it got more and more press coverage. They soon realized their backroom project was going to get a great deal more attention than they had originally thought. Now they were anticipating that the initial launch would attract something in the neighborhood of 2,000 queries per second — ten times the original estimate.

As a result, they were forced to scale out the Wolfram Alpha infrastructure. (And thanks to the deep pockets of Wolfram Research, they could do so.) But the time scale was compressed. It was already March and they were looking to launch the site in May. They determined the only way to ramp up the capacity so quickly was to deploy large ready-made clusters, i.e., HPC machines. That’s basically why the 576-node cluster from R Systems (R Smarr) and a slightly smaller Dell HPC cluster were added. The other three datacenters consist of much smaller cluster systems using vanilla servers.

According to Porter, strictly speaking they don’t depend upon supercomputers for the Wolfram Alpha application. The queries are being handled in parallel, but a tightly-coupled system is not required for that. There’s no MPI programming involved. Since Mathematica is the computational engine, the calculations themselves are single threaded, even presumably for operations like matrix multiplication. Aggregating all the queries is where the parallelism comes in, just like any typical Web application.

However, since Wolfram Alpha is all about computation, the extra CPU horsepower and memory performance of HPC servers do not go to waste. Traditional search applications are pretty easy on the CPU, since basically they’re just scanning through an index of Web pages. Wolfram Alpha, on the other hand, is doing heavy-duty math, so there is a much greater use of floating point and high precision fixed-point arithmetic. And all the calculations are being done in real time. “Every time you go the Web site and provide an input, the result you get back is generated on the fly,” explained Porter.

As you might suspect, computational capacity per query is not unlimited. The software automatically times out if a calculation is hogging the CPU. Thus, for example, the Haferman carpet fractal can be run with an iteration of six, but it quits if the iteration is seven or greater. Similarly, if you try to compute the factorial of 250,000 or greater — no dice.

But the Web site’s biggest stress test is probably ahead of it. The May launch of Wolfram Alpha came just as many universities and high schools were shutting down for the year. Since Wolfram Alpha is ideally suited for students and teachers, especially for math and science course work, it wouldn’t be surprising to see a significant uptick in Web site traffic when schools come back into session at the end of August and beginning of September.

According to Porter they expect to expand the infrastructure within the year beyond the 10,000 or so CPU cores they now have deployed. “I expect as we grow, we’ll grow at this supercomputer-sized scale,” he said. The project team is also reevaluating the infrastructure design to determine if they can improve the system as it scales out. In particular, they’re looking at increasing the number of connections from the databases to the compute nodes to maximize throughput.

Since Mathematica currently runs only on commodity processors, for the time being Wolfram Alpha infrastructure will be based on x86 servers. However, Wolfram Research is investigating GPUs and other types of computational accelerators and as support for those technologies are integrated into Mathematica, they will migrate into Wolfram Alpha as well. “But the fundamental limitation isn’t the technology itself,” explained Porter. “It’s how do we enable ordinary folks to be able to take advantage of that technology. I think in some ways Wolfram Alpha is the model to accomplish that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This