Wolfram Alpha: A Web-Based Application That Embraced Supercomputers

By Michael Feldman

July 9, 2009

It was less than two months ago that Wolfram Alpha launched and introduced the idea of a Web site for universal computation. Wolfram Alpha is based on Wolfram Research’s Mathematica, but uses it to drive a general-purpose computational engine that can be applied across more than a thousand knowledge domains.

The launch created quite a bit of fanfare in the media since Wolfram Alpha was seen (incorrectly) as a rival to search engines like Google and Yahoo. The new application also encapsulated the notion of the Semantic Web, which many envision as “the next big thing.” Add to that the fact that the Web site was built on top of supercomputers and you have all the ingredients for a juicy high-tech story for the masses.

The supercomputer infrastructure was one of the least talked about aspects of the project, but to our publication, one of the most interesting. Schoeller Porter, who now does business development for Wolfram Alpha, wrote about the pre-launch of the Web site in a recent blog post, and how the project outgrew the initial infrastructure plan even before it booted up.

According to Porter, whom I spoke with shortly after he wrote the blog entry, the project’s initial plan devised in February was to roll out Wolfram Alpha on a much smaller scale. The idea was they would make a discrete announcement in the Mathematica community, and users would trickle in. They were anticipating early traffic would be around 200 queries per second. For that kind of computing load, they would be able to get by with a few datacenters populated by modest-sized Web-style clusters — “normal servers you can buy off the shelf from anywhere,” said Porter.

Then in early March, Stephen Wolfram wrote a blog post announcing Wolfram Alpha and they started getting a lot more inquiries about the it. “It clearly hit a nerve in the Semantic Web community,” explained Porter. From that point on, they noticed that every time Wolfram gave a speech on the subject, it got more and more press coverage. They soon realized their backroom project was going to get a great deal more attention than they had originally thought. Now they were anticipating that the initial launch would attract something in the neighborhood of 2,000 queries per second — ten times the original estimate.

As a result, they were forced to scale out the Wolfram Alpha infrastructure. (And thanks to the deep pockets of Wolfram Research, they could do so.) But the time scale was compressed. It was already March and they were looking to launch the site in May. They determined the only way to ramp up the capacity so quickly was to deploy large ready-made clusters, i.e., HPC machines. That’s basically why the 576-node cluster from R Systems (R Smarr) and a slightly smaller Dell HPC cluster were added. The other three datacenters consist of much smaller cluster systems using vanilla servers.

According to Porter, strictly speaking they don’t depend upon supercomputers for the Wolfram Alpha application. The queries are being handled in parallel, but a tightly-coupled system is not required for that. There’s no MPI programming involved. Since Mathematica is the computational engine, the calculations themselves are single threaded, even presumably for operations like matrix multiplication. Aggregating all the queries is where the parallelism comes in, just like any typical Web application.

However, since Wolfram Alpha is all about computation, the extra CPU horsepower and memory performance of HPC servers do not go to waste. Traditional search applications are pretty easy on the CPU, since basically they’re just scanning through an index of Web pages. Wolfram Alpha, on the other hand, is doing heavy-duty math, so there is a much greater use of floating point and high precision fixed-point arithmetic. And all the calculations are being done in real time. “Every time you go the Web site and provide an input, the result you get back is generated on the fly,” explained Porter.

As you might suspect, computational capacity per query is not unlimited. The software automatically times out if a calculation is hogging the CPU. Thus, for example, the Haferman carpet fractal can be run with an iteration of six, but it quits if the iteration is seven or greater. Similarly, if you try to compute the factorial of 250,000 or greater — no dice.

But the Web site’s biggest stress test is probably ahead of it. The May launch of Wolfram Alpha came just as many universities and high schools were shutting down for the year. Since Wolfram Alpha is ideally suited for students and teachers, especially for math and science course work, it wouldn’t be surprising to see a significant uptick in Web site traffic when schools come back into session at the end of August and beginning of September.

According to Porter they expect to expand the infrastructure within the year beyond the 10,000 or so CPU cores they now have deployed. “I expect as we grow, we’ll grow at this supercomputer-sized scale,” he said. The project team is also reevaluating the infrastructure design to determine if they can improve the system as it scales out. In particular, they’re looking at increasing the number of connections from the databases to the compute nodes to maximize throughput.

Since Mathematica currently runs only on commodity processors, for the time being Wolfram Alpha infrastructure will be based on x86 servers. However, Wolfram Research is investigating GPUs and other types of computational accelerators and as support for those technologies are integrated into Mathematica, they will migrate into Wolfram Alpha as well. “But the fundamental limitation isn’t the technology itself,” explained Porter. “It’s how do we enable ordinary folks to be able to take advantage of that technology. I think in some ways Wolfram Alpha is the model to accomplish that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This