Wolfram Alpha: A Web-Based Application That Embraced Supercomputers

By Michael Feldman

July 9, 2009

It was less than two months ago that Wolfram Alpha launched and introduced the idea of a Web site for universal computation. Wolfram Alpha is based on Wolfram Research’s Mathematica, but uses it to drive a general-purpose computational engine that can be applied across more than a thousand knowledge domains.

The launch created quite a bit of fanfare in the media since Wolfram Alpha was seen (incorrectly) as a rival to search engines like Google and Yahoo. The new application also encapsulated the notion of the Semantic Web, which many envision as “the next big thing.” Add to that the fact that the Web site was built on top of supercomputers and you have all the ingredients for a juicy high-tech story for the masses.

The supercomputer infrastructure was one of the least talked about aspects of the project, but to our publication, one of the most interesting. Schoeller Porter, who now does business development for Wolfram Alpha, wrote about the pre-launch of the Web site in a recent blog post, and how the project outgrew the initial infrastructure plan even before it booted up.

According to Porter, whom I spoke with shortly after he wrote the blog entry, the project’s initial plan devised in February was to roll out Wolfram Alpha on a much smaller scale. The idea was they would make a discrete announcement in the Mathematica community, and users would trickle in. They were anticipating early traffic would be around 200 queries per second. For that kind of computing load, they would be able to get by with a few datacenters populated by modest-sized Web-style clusters — “normal servers you can buy off the shelf from anywhere,” said Porter.

Then in early March, Stephen Wolfram wrote a blog post announcing Wolfram Alpha and they started getting a lot more inquiries about the it. “It clearly hit a nerve in the Semantic Web community,” explained Porter. From that point on, they noticed that every time Wolfram gave a speech on the subject, it got more and more press coverage. They soon realized their backroom project was going to get a great deal more attention than they had originally thought. Now they were anticipating that the initial launch would attract something in the neighborhood of 2,000 queries per second — ten times the original estimate.

As a result, they were forced to scale out the Wolfram Alpha infrastructure. (And thanks to the deep pockets of Wolfram Research, they could do so.) But the time scale was compressed. It was already March and they were looking to launch the site in May. They determined the only way to ramp up the capacity so quickly was to deploy large ready-made clusters, i.e., HPC machines. That’s basically why the 576-node cluster from R Systems (R Smarr) and a slightly smaller Dell HPC cluster were added. The other three datacenters consist of much smaller cluster systems using vanilla servers.

According to Porter, strictly speaking they don’t depend upon supercomputers for the Wolfram Alpha application. The queries are being handled in parallel, but a tightly-coupled system is not required for that. There’s no MPI programming involved. Since Mathematica is the computational engine, the calculations themselves are single threaded, even presumably for operations like matrix multiplication. Aggregating all the queries is where the parallelism comes in, just like any typical Web application.

However, since Wolfram Alpha is all about computation, the extra CPU horsepower and memory performance of HPC servers do not go to waste. Traditional search applications are pretty easy on the CPU, since basically they’re just scanning through an index of Web pages. Wolfram Alpha, on the other hand, is doing heavy-duty math, so there is a much greater use of floating point and high precision fixed-point arithmetic. And all the calculations are being done in real time. “Every time you go the Web site and provide an input, the result you get back is generated on the fly,” explained Porter.

As you might suspect, computational capacity per query is not unlimited. The software automatically times out if a calculation is hogging the CPU. Thus, for example, the Haferman carpet fractal can be run with an iteration of six, but it quits if the iteration is seven or greater. Similarly, if you try to compute the factorial of 250,000 or greater — no dice.

But the Web site’s biggest stress test is probably ahead of it. The May launch of Wolfram Alpha came just as many universities and high schools were shutting down for the year. Since Wolfram Alpha is ideally suited for students and teachers, especially for math and science course work, it wouldn’t be surprising to see a significant uptick in Web site traffic when schools come back into session at the end of August and beginning of September.

According to Porter they expect to expand the infrastructure within the year beyond the 10,000 or so CPU cores they now have deployed. “I expect as we grow, we’ll grow at this supercomputer-sized scale,” he said. The project team is also reevaluating the infrastructure design to determine if they can improve the system as it scales out. In particular, they’re looking at increasing the number of connections from the databases to the compute nodes to maximize throughput.

Since Mathematica currently runs only on commodity processors, for the time being Wolfram Alpha infrastructure will be based on x86 servers. However, Wolfram Research is investigating GPUs and other types of computational accelerators and as support for those technologies are integrated into Mathematica, they will migrate into Wolfram Alpha as well. “But the fundamental limitation isn’t the technology itself,” explained Porter. “It’s how do we enable ordinary folks to be able to take advantage of that technology. I think in some ways Wolfram Alpha is the model to accomplish that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This