Beyond Speeds and Feeds

By By Geoffrey James

July 13, 2009

High Performance Computing (HPC) was once limited to a select group of laboratories where scientists or engineers solved complex problems on huge mainframe “supercomputers” that cost millions of dollars to buy and maintain. Today the drop in the price of computer power has combined with new architectures for clustering to bring HPC to a wide range of applications inside a growing number of industries at a reasonable price.

“Computer power is the raw fuel for business innovation,” explains Dr. Jeff Layton, enterprise technologist for HPC at Dell Inc. “Making HPC available to a wider range of customers, and making it more cost-effective, will have a long-term effect, not just on productivity but also on the ability of companies to thrive, not only during difficult economic times but also for many years to come.”

Along with this democratization of HPC has come a growing understanding, among pundits and executives alike, that the traditional way of measuring HPC—the raw performance of a single CPU—seems out of date. As the computer industry leaps to more-complex computing environments, it has become clear that HPC performance must be redefined in order to encapsulate the wider business case, according to Scot Schultz, AMD’s senior strategic alliance manager for HPC.

“What’s important is not how fast the CPU can run a test suite but how effectively it can solve a real-life problem,” Schultz says.

Productivity Now Trumps Raw Performance
More and more analysts, OEMs and IT executives have come to understand that raw performance is less important than how the underlying architecture makes end users more productive. “The performance that’s actually delivered to end users is highly dependent on the chip architecture and how well the software can take advantage of it,” explains Layton.

IT managers who make HPC buying decisions based purely on those obsolete measurements risk getting less bang for their buck, according to John Spooner, an analyst at the market research firm Technology Business Research (TBR). “There are always going to be customers who want all-out performance and don’t care about anything else,” he admits, “but many companies are now embracing the idea that the greatest business value comes not from raw performance but from getting the maximum performance for your overall IT dollar.”

Companies that adopt HPC are typically less interested in “speed and feeds” than in creating a long-term competitive advantage. A case in point is the sport department of Ferrari, one of the first companies to test Microsoft’s Windows HPC Server 2008.

“Ferrari is always looking for the most-advanced technological solutions, and the same goes for software and engineering,” says Piergiorgio Grossi, head of information systems at Ferrari. Like many other companies embracing HPC today, Ferrari is using it widely across the corporation—“for our users, engineers and administrators,” Grossi says.

Companies need to be thinking about productivity as a performance measurement, according to Vince Mendillo, director of marketing for the HPC business group at Microsoft. “HPC is expanding into vertical markets, ranging from engineering to aerospace to energy and many other industries,” he explains. “Ultimately, HPC is about helping customers get the job done.”

Measuring Productivity
HPC has traditionally been measured in terms of the raw computing power of a single core on a single CPU. Using that primitive metric, the battle for “market leadership” has been primarily between the two leading CPU firms: AMD and Intel, according to Rob Enderle of the Enderle Group. “For decades, these two companies have traded positions as the ‘industry leader’ when it comes to raw performance figures,” he says.

It’s a contest that’s likely to continue for the foreseeable future, according to Ken Cayton, research manager for enterprise platforms at the market research firm IDC. “Both companies are constantly moving forward, so one would expect to see the same kind of leapfrog behavior we’ve seen so frequently in the past,” he says.

However, IT executives need to be aware that the traditional “speeds and feeds” measurement is largely irrelevant in a world in which HPC takes place on CPU chips that contain multiple cores, which are, in turn, harnessed into clusters. In a multiprocessing environment, other metrics such as power efficiency start becoming more important, according to TBR’s Spooner. “Because energy costs are such a big proportion of the expense of running a large data center, businesses now want to maximize the amount of work they get done for each unit of electricity they pay for,” he explains.

Indeed, some companies are finding that the hard limitation of their HPC computing isn’t raw performance but the amount of electricity they can get piped into their data center. Cayton relates an experience he recently had with a Manhattan firm that is doing financial analysis but has only a limited amount of power coming into the building. “It therefore is more concerned with how effectively its HPC system uses power than it is about how quickly one element of the system can perform calculations,” Cayton explains.

Architecture and Performance
With multiprocessing and clustering, the speed of an individual core is often far less important than the ability to move data around between the various chips, explains Jordan Selburn, principal analyst at the market research firm iSuppli.

“In a lot of areas and applications, raw horsepower isn’t a significant factor, because other standards drive the degree of speed needed and anything excess is just that: excess,” Selburn explains. “The key in HPC applications is how efficiently you can perform the needed function.”

And that efficiency is intimately tied to the underlying architecture of the CPU chip, according to Einar Rustad, vice president of business development at Numascale, a company that makes chip sets that link multiple CPUs into HPC clusters. “The challenge with multiprocessing is keeping everything in sync, which means that each CPU must have swift access to the data that’s been processed by the other CPUs,” he explains.

To accomplish this, the cluster must be able to move data around quickly, something the HyperTransport™ architecture that AMD uses makes relatively easy. “With other chip architectures, you have to move data around by using the front-side bus, which is not only ungainly from an electronics viewpoint but also incurs a lot of overhead and prevents a true shared memory architecture with cache coherence,” says Rustad. “AMD’s HyperTransport technology, by contrast, makes it easier to connect CPUs together in a way that enables programmers to address the combined memory space and to benefit from the aggregated memory bandwidth.”

One benefit of directly connecting the chips is a potential decrease in data latency, which means that each CPU in the cluster will spend less time idling and more time actually processing data, according to Gilad Shainer, director of technical marketing for Mellanox Technologies, a leading supplier of semiconductor-based server and storage interconnect products.

“AMD has a good vision of how HPC should be handled,” Shainer says. “Its technological architecture provides value for many applications and end users, which is why we’re happy to collaborate with it to build the kind of balanced systems that companies want to buy.”

Real-Life Productivity
A chip architecture that handles data more efficiently can also make life easier for HPC programmers—an important issue in IT groups that may have limited access to top programming talent.

“One of the big limitations in HPC is adapting programs to run in parallel,” says Dell’s Layton. “The computer industry has been struggling for years with limitations on memory bandwidth per core, but that’s finally beginning to ease up, largely as the result of improvements in basic CPU architecture.”

Because programming for HPC is becoming easier, it’s beginning to show up in more industries and application areas. And that, in turn, has further lessened the importance of raw computing power as the primary HPC benchmark, because every industry has different requirements when it comes to the type of computing power that’s applicable to that industry. For example, financial HPC applications make extensive use of floating point, an area in which AMD’s architecture has a “slight edge” over other architectures, according to Christian Heidarson, an analyst at the market research firm Gartner.

HPC-friendly chip architecture can also make a future upgrade path easier. “Because HPC applications tend to be complex, companies are leery of pulling out their current systems and replacing them with new ones,” explains Layton, who notes that AMD has been designing CPU architectures that are socket-compatible, making it possible to upgrade a system without reloading and reconfiguring the software. The only change to the system that’s required is a BIOS upgrade, which takes a few minutes as opposed to the hours or days it might take to completely reconstruct a clustered system. “This makes it possible for a company to upgrade while limiting the downtime and cost risks inherent in re-creating and reinitializing the entire cluster,” says Layton.

In short, the raw performance of a single CPU may not be the best measurement of HPC. Rather, a metric such as the total cost of ownership (TCO) can provide a better baseline by which to judge systems and their underlying chip architecture.

“It’s a big change from the way people are used to thinking about HPC,” says AMD’s Schultz. “However, focusing on productivity means that companies can purchase their computer power more wisely and get the most benefit from their IT dollars.

For more on HPC solutions based on AMD Opteron™ processors go to www.amd.com/istanbulsolutions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This