Microsoft Releases New Software Tools for Researchers

By Michael Feldman

July 13, 2009

As scientists increasingly rely on big data to drive their research, a new set of software tools is emerging. Two of these new tools, developed by Microsoft’s External Research division, were launched on Monday at the Microsoft Research Faculty Summit in Redmond, Wash. They include the Project Trident workbench and the Dryad/DryadLINQ programming environment.

Project Trident was originally aimed at oceanographic applications (hence the name). The work began as a collaboration between Microsoft External Research, the University of Washington and the Monterey Bay Aquarium to provide a high-level workflow tool for oceanographers. Oceanography, like many scientific domains today, is being inundated with a deluge of data that researchers are struggling to manage.

Once the proof-of-concept stage for Project Trident was completed, Microsoft realized it could be used as a general-purpose platform for other areas, such as astronomy, environmental science, medicine or essentially any type of research that is dominated by workflow issues. The data is coming from a growing number of inexpensive sensors that collect information in real time as well as an ever-expanding collection of scientific databases being stored on the Internet or in private repositories. In many cases, both data rates and data volumes are growing beyond the capabilities of traditional software environments.

Unlike the commercial world, the science community tends to freely pass its data around. But turning the raw information into useful knowledge often requires weeks, months or even years of software development involving customized scripts and applications. The whole idea behind Trident is to enable workflow applications to be developed by scientists, rather than programmers, by structuring the process into modular steps.

“Why lock your knowledge up into scripts or programs when you could actually write it in a tool that other people stand a chance of reusing,” asks Roger Barga, who is leading Microsoft’s development of Project Trident. According to him, researchers are recognizing that the model of customized workflow development is not sustainable. Even if software maintenance were less expensive, scientists are looking for the kind of speed and flexibility that a code rewrite does not allow.

The Trident workbench is being used today by oceanographers at the University of Washington for seafloor-based research that uses thousands of ocean sensors and by researchers at the Monterey Bay Aquarium Research Institute to study Typhoon intensification.  The workbench is also being employed by astronomers at Johns Hopkins University to support the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) project, which is looking for objects in the solar system that could pose a threat to Earth. In this case the data being ingested comes from an array of 1.4 gigapixels digital cameras that capture images of the night sky.

Ecogenomic sensors

In a nutshell, the Trident workbench tool provides a visual framework for managing and developing workflows. At startup, the user sees a library of existing workflows and activities (or workflow steps). In the GUI, one can add or delete steps from the pipeline by simply dragging and dropping. The idea is that domain experts with no programming knowledge can go in and mix and match existing workflow components to author new experiments and run them on the fly.

A typical workflow would start with reading in the raw data — data files and/or sensor devices. The next step would be to convert the various data sources into a common format. An analysis pipeline — filtering and conditioning algorithms — would come next. Typically the last step is to produce a visual representation of the result.

It’s not all just shuffling objects around a GUI, however. The individual activities, such as reading the raw data, analyzing it, and creating visualizations have to be developed in the first place, as you would any other piece of software. But once developed, the activities can be bound to any user-generated workflows. According to Barga, their experience has been that once you get more than a dozen or so workflows constructed, the users find they’re no longer writing much new code.

One of the important strengths of Trident is that it can utilize HPC clusters. Scientific analysis at scale often requires a high performance computing platform for reasonable performance. By default Trident assumes a single node execution, but users can schedule a job across multiple cluster nodes by creating a workflow application that communicates with the HPC job scheduler.

As one might have guessed, the assumed clustering environment here is Microsoft’s Windows HPC Server, but Trident does allow you to plug in your own scheduler too. This enables researchers to run on a Linux cluster, which remains a much more common platform today for high performance computing. Barga says plugging into a non-Windows scheduler is just one of the different ways Trident has been designed for extensibility, noting that even the tool’s GUI can be replaced should users wish to have a customized look and feel. One dependency that cannot be jettisoned, however, is the Windows .NET framework. The .NET environment contains the Windows Workflow, which is the foundation of the Trident workbench.

The other tools Microsoft released on Monday — Dryad and DryadLINQ — are aimed at developers rather than end users. Dryad itself is a general-purpose data parallel programming runtime designed to run distributed applications on Windows clusters. The runtime is responsible for scheduling resources, handling hardware and software failures, and distributing data and code across the cluster as needed. DryadLINQ is an abstraction layer that runs LINQ (Language Integrated Query) operations on top of Dryad, the idea being to be able to execute data queries that automatically get parallelized via the Dryad runtime.

Unlike MPI, Dryad is not for latency sensitive computation. It is aimed at applications that can increase data throughput via loosely-coupled parallelization. Microsoft Research itself uses Dryad internally for search engine and machine learning research. Barga says they have scaled such applications up to 3,000 nodes on a Windows HPC Server cluster, noting that some of these jobs run for dozens of hours. “The beauty of the Dryad runtime is that if an individual node drops out or there’s a failure in one of the jobs, Dryad automatically recovers, moving the computation off the failed node and reproducing inputs that node was responsible for,” says Barga.

Microsoft is really offering Trident and Dryad/DryadLINQ as two separate solutions, but with interoperability. Trident includes a pre-defined custom activity that invokes Dryad/DryadLINQ, allowing the programmer to pass it LINQ queries. But the real intention seems to be to encourage users to develop their own Dryad/DryadLINQ components to hook into the Trident workbench or use them in standalone applications.

Trident and Dryad/DryadLINQ will be released under the MSR-LA license (Microsoft Research License Agreement) and, as such, is for non-commercial academic use only. Barga says Microsoft is considering some sort of license arrangement for commercial users, but without any requirement for royalty paybacks. The bottom line here is that Microsoft is not looking to generate revenue directly from these tools, but rather to expand the Windows ecosystem for researchers and encourage use of the Windows HPC Server platform.

Barga couldn’t talk about any future interoperability between these tools and Microsoft’s Azure cloud computing platform, but it’s reasonable to assume that all these technologies are heading toward convergence. “Science is moving to the cloud and we want to make sure that all of the tools that we offer, including things like Dryad and Trident … will work on the cloud for scientists who want to do really big data challenges,” says Barga.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This