Microsoft Releases New Software Tools for Researchers

By Michael Feldman

July 13, 2009

As scientists increasingly rely on big data to drive their research, a new set of software tools is emerging. Two of these new tools, developed by Microsoft’s External Research division, were launched on Monday at the Microsoft Research Faculty Summit in Redmond, Wash. They include the Project Trident workbench and the Dryad/DryadLINQ programming environment.

Project Trident was originally aimed at oceanographic applications (hence the name). The work began as a collaboration between Microsoft External Research, the University of Washington and the Monterey Bay Aquarium to provide a high-level workflow tool for oceanographers. Oceanography, like many scientific domains today, is being inundated with a deluge of data that researchers are struggling to manage.

Once the proof-of-concept stage for Project Trident was completed, Microsoft realized it could be used as a general-purpose platform for other areas, such as astronomy, environmental science, medicine or essentially any type of research that is dominated by workflow issues. The data is coming from a growing number of inexpensive sensors that collect information in real time as well as an ever-expanding collection of scientific databases being stored on the Internet or in private repositories. In many cases, both data rates and data volumes are growing beyond the capabilities of traditional software environments.

Unlike the commercial world, the science community tends to freely pass its data around. But turning the raw information into useful knowledge often requires weeks, months or even years of software development involving customized scripts and applications. The whole idea behind Trident is to enable workflow applications to be developed by scientists, rather than programmers, by structuring the process into modular steps.

“Why lock your knowledge up into scripts or programs when you could actually write it in a tool that other people stand a chance of reusing,” asks Roger Barga, who is leading Microsoft’s development of Project Trident. According to him, researchers are recognizing that the model of customized workflow development is not sustainable. Even if software maintenance were less expensive, scientists are looking for the kind of speed and flexibility that a code rewrite does not allow.

The Trident workbench is being used today by oceanographers at the University of Washington for seafloor-based research that uses thousands of ocean sensors and by researchers at the Monterey Bay Aquarium Research Institute to study Typhoon intensification.  The workbench is also being employed by astronomers at Johns Hopkins University to support the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) project, which is looking for objects in the solar system that could pose a threat to Earth. In this case the data being ingested comes from an array of 1.4 gigapixels digital cameras that capture images of the night sky.

Ecogenomic sensors

In a nutshell, the Trident workbench tool provides a visual framework for managing and developing workflows. At startup, the user sees a library of existing workflows and activities (or workflow steps). In the GUI, one can add or delete steps from the pipeline by simply dragging and dropping. The idea is that domain experts with no programming knowledge can go in and mix and match existing workflow components to author new experiments and run them on the fly.

A typical workflow would start with reading in the raw data — data files and/or sensor devices. The next step would be to convert the various data sources into a common format. An analysis pipeline — filtering and conditioning algorithms — would come next. Typically the last step is to produce a visual representation of the result.

It’s not all just shuffling objects around a GUI, however. The individual activities, such as reading the raw data, analyzing it, and creating visualizations have to be developed in the first place, as you would any other piece of software. But once developed, the activities can be bound to any user-generated workflows. According to Barga, their experience has been that once you get more than a dozen or so workflows constructed, the users find they’re no longer writing much new code.

One of the important strengths of Trident is that it can utilize HPC clusters. Scientific analysis at scale often requires a high performance computing platform for reasonable performance. By default Trident assumes a single node execution, but users can schedule a job across multiple cluster nodes by creating a workflow application that communicates with the HPC job scheduler.

As one might have guessed, the assumed clustering environment here is Microsoft’s Windows HPC Server, but Trident does allow you to plug in your own scheduler too. This enables researchers to run on a Linux cluster, which remains a much more common platform today for high performance computing. Barga says plugging into a non-Windows scheduler is just one of the different ways Trident has been designed for extensibility, noting that even the tool’s GUI can be replaced should users wish to have a customized look and feel. One dependency that cannot be jettisoned, however, is the Windows .NET framework. The .NET environment contains the Windows Workflow, which is the foundation of the Trident workbench.

The other tools Microsoft released on Monday — Dryad and DryadLINQ — are aimed at developers rather than end users. Dryad itself is a general-purpose data parallel programming runtime designed to run distributed applications on Windows clusters. The runtime is responsible for scheduling resources, handling hardware and software failures, and distributing data and code across the cluster as needed. DryadLINQ is an abstraction layer that runs LINQ (Language Integrated Query) operations on top of Dryad, the idea being to be able to execute data queries that automatically get parallelized via the Dryad runtime.

Unlike MPI, Dryad is not for latency sensitive computation. It is aimed at applications that can increase data throughput via loosely-coupled parallelization. Microsoft Research itself uses Dryad internally for search engine and machine learning research. Barga says they have scaled such applications up to 3,000 nodes on a Windows HPC Server cluster, noting that some of these jobs run for dozens of hours. “The beauty of the Dryad runtime is that if an individual node drops out or there’s a failure in one of the jobs, Dryad automatically recovers, moving the computation off the failed node and reproducing inputs that node was responsible for,” says Barga.

Microsoft is really offering Trident and Dryad/DryadLINQ as two separate solutions, but with interoperability. Trident includes a pre-defined custom activity that invokes Dryad/DryadLINQ, allowing the programmer to pass it LINQ queries. But the real intention seems to be to encourage users to develop their own Dryad/DryadLINQ components to hook into the Trident workbench or use them in standalone applications.

Trident and Dryad/DryadLINQ will be released under the MSR-LA license (Microsoft Research License Agreement) and, as such, is for non-commercial academic use only. Barga says Microsoft is considering some sort of license arrangement for commercial users, but without any requirement for royalty paybacks. The bottom line here is that Microsoft is not looking to generate revenue directly from these tools, but rather to expand the Windows ecosystem for researchers and encourage use of the Windows HPC Server platform.

Barga couldn’t talk about any future interoperability between these tools and Microsoft’s Azure cloud computing platform, but it’s reasonable to assume that all these technologies are heading toward convergence. “Science is moving to the cloud and we want to make sure that all of the tools that we offer, including things like Dryad and Trident … will work on the cloud for scientists who want to do really big data challenges,” says Barga.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This