Benchmarking Your Cloud

By John E. West

July 16, 2009

It was inevitable that with all the hype and marketing dollars directed at cloud computing these days that someone would eventually start trying to use them for real work. Of course, this puts a nasty wrinkle into marketing plans because once people starting using them for real work, then there are actual performance results. The results themselves aren’t too troubling because they are usually point cases, and negative messages are easily explained away by calling on the vagaries of a particular software stack and the giving away of snazzy memory sticks. But then the results lead the engineering-minded to wonder whether all of the available cloud computing alternatives behave in the same way, and if not which of the them might be best suited for a particular task. This leads to standardized testing and then, before you know it, we have full-fledged benchmarking on our hands.

Not great for marketing departments, but wonderful for customers. And the good news for customers — and potential customers — of cloud computing is that the community is starting to think seriously about benchmarking the performance of clouds.

There is a long history in benchmarking computer hardware or software components tests that isolate, as much as possible, a single feature of the system under test to facilitate comparisons. In order to make sure that the comparisons are valid, benchmarks like those from the TPC require testing be done in a managed environment with a fixed configuration that can be completely described and replicated for future testing. Further, since the TPC benchmarks focus on transactional database systems they also require adherence to the ACID properties, notably (as we’ll see in a moment) the coherence property.

But, when you think about it, this benchmarking model isn’t really a good match for clouds, where the service model is designed to be dynamic, distributed and robust. One of the key selling points for cloud infrastructure is that it can grow and shrink with a particular user’s demand, and workload can be shifted to wherever it is most advantageously served. In this environment the hardware may change over time, as may parts of the system software stack. Furthermore creating a reliable distributed processing environment usually means replicating parts of the data, and making these data available in the presence of communications failures means relaxing some of the traditional guarantees on data consistency (Amazon’s cloud storage offering only guarantees eventual consistency, for example).

So, while traditional approaches to benchmarking, and traditional benchmarks for that matter, will provide some useful information about the performance of clouds, the traditional testing philosophy behind most benchmarks today doesn’t lend itself to creating a test of merit that enables comparison of two clouds with one another in a way that takes into account the very features that make them interesting technology solutions for certain classes of problems in the first place.

The general topic is dealt with ably in an interesting paper [PDF] from DBTest ’09. In that paper the authors outline what they’re looking for in a cloud benchmark: something that doesn’t require a static system configuration, reflects the ability of the cloud to adapt to changing load, assesses robustness to failures of various components, and includes the full cloud software stack rather than just one component.

That’s a pretty tall order, and amounts to something akin to not just being able to demonstrate that your 1996 Porsche 993 isn’t just faster than a Corvette, but that it’s cooler. Speed you can measure; “cool” is sufficiently general that it’s pretty hard to quantify. Still, you have to have a goal, and working on the problem is certainly worthwhile (not least because then my friends Steve and John could avoid a lot of pointless bar fights). The authors do manage a pretty reasonable suggestion for a benchmark in the paper, which I commend to your summer beach reading lists.

There are some cloud benchmarking efforts already well past the paper stage. Cloudstone, for example, is a benchmark out of UC Berkeley designed to measure the performance of clouds designed to run Web 2.0 applications. And there is also MalStone, a benchmark of more direct interest to the HPC crowd since it is designed specifically to allow the comparison of clouds designed for data intensive computing.

As described by Robert Grossman, the director of the National Center for Data Mining at the University of Illinois at Chicago and chair of the Open Cloud Consortium, MalStone is a “stylized analytic computation of a type that is common in data intensive computing.” The MalStone computation starts with a very large set of distributed files that document the date and time that users visited Web pages (including a user id), and also specify whether those users’ computers later become compromised by malware. The computation then goes through the files trying to identify Web pages that are possible sources of contamination by cross-referencing the browser history for each user id with records of whether the user’s machine is compromised. Web sites that figure prominently in the average browsing history of a cohort of machines that were subsequently compromised are suspect.

As Grossman points out, the task itself need not be a good way of finding Web sites hosting malware. It only needs to be a task sufficient to measure the performance of clouds for data intensive tasks:

We call MalStone stylized since we do not argue that this is a useful or effective algorithm for finding compromised sites. Rather, we point out that if the log data is so large that it requires large numbers of disks to manage it, then computing something as simple as this ratio can be computationally challenging. For example, if the data spans 100 disks, then the computation cannot be done easily with any of the databases that are common today. On the other hand, if the data fits into a database, then this statistic can be computed easily using a few lines of SQL.

There are two benchmarks, MalStone A and MalStone B. MalStone A computes a global figure for each Web site for all times included in the logs; MalStone B computes the figures by Web site by week. The datasets involved are quite large, with up to 100 TB of data.

MalStone A-10 uses 10 billion records so that in total there is 1 TB of data. Similarly, MalStone A-100 requires 100 billion records and MalStone A-1000 requires 1 trillion records. MalStone B-10, B-100 and B-1000 are defined in the same way.

You can read more about the benchmarks and get the actual source code for them at code.google.com/p/malgen/.

Earlier this summer Grossman and his team at the Open Cloud Consortium (OCC) announced results comparing Hadoop (the environment used by Facebook, Yahoo, and others) with the open-source cloud architecture Sector. Grossman describes Sector in a blog post as “an open source cloud written in C++ for storing, sharing and processing large data sets.” The OCC uses 10 GbE circuits on the National Lambda Rail (NLR) as the backbone for its testbed, and runs its tests over the NLR between San Diego, Los Angeles, Chicago and Washington, DC.

The preliminary results are interesting. They show significant differences between Hadoop and Sector, but also differences between Hadoop with Hadoop’s implementation of MapReduce, and Hadoop using Streams and coding MalStone in Python. The most significant differences are for MalStone B, where performance ranges from 841 minutes with Hadoop/MapReduce to 44 minutes with Sector. Even the Hadoop/Streams implementation, which is considerably faster than the MapReduce, comes in at nearly 143 minutes. The range there is 14 hours to 44 minutes, worst-case to best.

These results highlight the importance of making sure your cloud is designed to solve the problem at hand. And as MalStone and other cloud benchmarking efforts continue to evolve users will have even more robust tools to make informed decisions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This