Benchmarking Your Cloud

By John E. West

July 16, 2009

It was inevitable that with all the hype and marketing dollars directed at cloud computing these days that someone would eventually start trying to use them for real work. Of course, this puts a nasty wrinkle into marketing plans because once people starting using them for real work, then there are actual performance results. The results themselves aren’t too troubling because they are usually point cases, and negative messages are easily explained away by calling on the vagaries of a particular software stack and the giving away of snazzy memory sticks. But then the results lead the engineering-minded to wonder whether all of the available cloud computing alternatives behave in the same way, and if not which of the them might be best suited for a particular task. This leads to standardized testing and then, before you know it, we have full-fledged benchmarking on our hands.

Not great for marketing departments, but wonderful for customers. And the good news for customers — and potential customers — of cloud computing is that the community is starting to think seriously about benchmarking the performance of clouds.

There is a long history in benchmarking computer hardware or software components tests that isolate, as much as possible, a single feature of the system under test to facilitate comparisons. In order to make sure that the comparisons are valid, benchmarks like those from the TPC require testing be done in a managed environment with a fixed configuration that can be completely described and replicated for future testing. Further, since the TPC benchmarks focus on transactional database systems they also require adherence to the ACID properties, notably (as we’ll see in a moment) the coherence property.

But, when you think about it, this benchmarking model isn’t really a good match for clouds, where the service model is designed to be dynamic, distributed and robust. One of the key selling points for cloud infrastructure is that it can grow and shrink with a particular user’s demand, and workload can be shifted to wherever it is most advantageously served. In this environment the hardware may change over time, as may parts of the system software stack. Furthermore creating a reliable distributed processing environment usually means replicating parts of the data, and making these data available in the presence of communications failures means relaxing some of the traditional guarantees on data consistency (Amazon’s cloud storage offering only guarantees eventual consistency, for example).

So, while traditional approaches to benchmarking, and traditional benchmarks for that matter, will provide some useful information about the performance of clouds, the traditional testing philosophy behind most benchmarks today doesn’t lend itself to creating a test of merit that enables comparison of two clouds with one another in a way that takes into account the very features that make them interesting technology solutions for certain classes of problems in the first place.

The general topic is dealt with ably in an interesting paper [PDF] from DBTest ’09. In that paper the authors outline what they’re looking for in a cloud benchmark: something that doesn’t require a static system configuration, reflects the ability of the cloud to adapt to changing load, assesses robustness to failures of various components, and includes the full cloud software stack rather than just one component.

That’s a pretty tall order, and amounts to something akin to not just being able to demonstrate that your 1996 Porsche 993 isn’t just faster than a Corvette, but that it’s cooler. Speed you can measure; “cool” is sufficiently general that it’s pretty hard to quantify. Still, you have to have a goal, and working on the problem is certainly worthwhile (not least because then my friends Steve and John could avoid a lot of pointless bar fights). The authors do manage a pretty reasonable suggestion for a benchmark in the paper, which I commend to your summer beach reading lists.

There are some cloud benchmarking efforts already well past the paper stage. Cloudstone, for example, is a benchmark out of UC Berkeley designed to measure the performance of clouds designed to run Web 2.0 applications. And there is also MalStone, a benchmark of more direct interest to the HPC crowd since it is designed specifically to allow the comparison of clouds designed for data intensive computing.

As described by Robert Grossman, the director of the National Center for Data Mining at the University of Illinois at Chicago and chair of the Open Cloud Consortium, MalStone is a “stylized analytic computation of a type that is common in data intensive computing.” The MalStone computation starts with a very large set of distributed files that document the date and time that users visited Web pages (including a user id), and also specify whether those users’ computers later become compromised by malware. The computation then goes through the files trying to identify Web pages that are possible sources of contamination by cross-referencing the browser history for each user id with records of whether the user’s machine is compromised. Web sites that figure prominently in the average browsing history of a cohort of machines that were subsequently compromised are suspect.

As Grossman points out, the task itself need not be a good way of finding Web sites hosting malware. It only needs to be a task sufficient to measure the performance of clouds for data intensive tasks:

We call MalStone stylized since we do not argue that this is a useful or effective algorithm for finding compromised sites. Rather, we point out that if the log data is so large that it requires large numbers of disks to manage it, then computing something as simple as this ratio can be computationally challenging. For example, if the data spans 100 disks, then the computation cannot be done easily with any of the databases that are common today. On the other hand, if the data fits into a database, then this statistic can be computed easily using a few lines of SQL.

There are two benchmarks, MalStone A and MalStone B. MalStone A computes a global figure for each Web site for all times included in the logs; MalStone B computes the figures by Web site by week. The datasets involved are quite large, with up to 100 TB of data.

MalStone A-10 uses 10 billion records so that in total there is 1 TB of data. Similarly, MalStone A-100 requires 100 billion records and MalStone A-1000 requires 1 trillion records. MalStone B-10, B-100 and B-1000 are defined in the same way.

You can read more about the benchmarks and get the actual source code for them at code.google.com/p/malgen/.

Earlier this summer Grossman and his team at the Open Cloud Consortium (OCC) announced results comparing Hadoop (the environment used by Facebook, Yahoo, and others) with the open-source cloud architecture Sector. Grossman describes Sector in a blog post as “an open source cloud written in C++ for storing, sharing and processing large data sets.” The OCC uses 10 GbE circuits on the National Lambda Rail (NLR) as the backbone for its testbed, and runs its tests over the NLR between San Diego, Los Angeles, Chicago and Washington, DC.

The preliminary results are interesting. They show significant differences between Hadoop and Sector, but also differences between Hadoop with Hadoop’s implementation of MapReduce, and Hadoop using Streams and coding MalStone in Python. The most significant differences are for MalStone B, where performance ranges from 841 minutes with Hadoop/MapReduce to 44 minutes with Sector. Even the Hadoop/Streams implementation, which is considerably faster than the MapReduce, comes in at nearly 143 minutes. The range there is 14 hours to 44 minutes, worst-case to best.

These results highlight the importance of making sure your cloud is designed to solve the problem at hand. And as MalStone and other cloud benchmarking efforts continue to evolve users will have even more robust tools to make informed decisions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This