Benchmarking Your Cloud

By John E. West

July 16, 2009

It was inevitable that with all the hype and marketing dollars directed at cloud computing these days that someone would eventually start trying to use them for real work. Of course, this puts a nasty wrinkle into marketing plans because once people starting using them for real work, then there are actual performance results. The results themselves aren’t too troubling because they are usually point cases, and negative messages are easily explained away by calling on the vagaries of a particular software stack and the giving away of snazzy memory sticks. But then the results lead the engineering-minded to wonder whether all of the available cloud computing alternatives behave in the same way, and if not which of the them might be best suited for a particular task. This leads to standardized testing and then, before you know it, we have full-fledged benchmarking on our hands.

Not great for marketing departments, but wonderful for customers. And the good news for customers — and potential customers — of cloud computing is that the community is starting to think seriously about benchmarking the performance of clouds.

There is a long history in benchmarking computer hardware or software components tests that isolate, as much as possible, a single feature of the system under test to facilitate comparisons. In order to make sure that the comparisons are valid, benchmarks like those from the TPC require testing be done in a managed environment with a fixed configuration that can be completely described and replicated for future testing. Further, since the TPC benchmarks focus on transactional database systems they also require adherence to the ACID properties, notably (as we’ll see in a moment) the coherence property.

But, when you think about it, this benchmarking model isn’t really a good match for clouds, where the service model is designed to be dynamic, distributed and robust. One of the key selling points for cloud infrastructure is that it can grow and shrink with a particular user’s demand, and workload can be shifted to wherever it is most advantageously served. In this environment the hardware may change over time, as may parts of the system software stack. Furthermore creating a reliable distributed processing environment usually means replicating parts of the data, and making these data available in the presence of communications failures means relaxing some of the traditional guarantees on data consistency (Amazon’s cloud storage offering only guarantees eventual consistency, for example).

So, while traditional approaches to benchmarking, and traditional benchmarks for that matter, will provide some useful information about the performance of clouds, the traditional testing philosophy behind most benchmarks today doesn’t lend itself to creating a test of merit that enables comparison of two clouds with one another in a way that takes into account the very features that make them interesting technology solutions for certain classes of problems in the first place.

The general topic is dealt with ably in an interesting paper [PDF] from DBTest ’09. In that paper the authors outline what they’re looking for in a cloud benchmark: something that doesn’t require a static system configuration, reflects the ability of the cloud to adapt to changing load, assesses robustness to failures of various components, and includes the full cloud software stack rather than just one component.

That’s a pretty tall order, and amounts to something akin to not just being able to demonstrate that your 1996 Porsche 993 isn’t just faster than a Corvette, but that it’s cooler. Speed you can measure; “cool” is sufficiently general that it’s pretty hard to quantify. Still, you have to have a goal, and working on the problem is certainly worthwhile (not least because then my friends Steve and John could avoid a lot of pointless bar fights). The authors do manage a pretty reasonable suggestion for a benchmark in the paper, which I commend to your summer beach reading lists.

There are some cloud benchmarking efforts already well past the paper stage. Cloudstone, for example, is a benchmark out of UC Berkeley designed to measure the performance of clouds designed to run Web 2.0 applications. And there is also MalStone, a benchmark of more direct interest to the HPC crowd since it is designed specifically to allow the comparison of clouds designed for data intensive computing.

As described by Robert Grossman, the director of the National Center for Data Mining at the University of Illinois at Chicago and chair of the Open Cloud Consortium, MalStone is a “stylized analytic computation of a type that is common in data intensive computing.” The MalStone computation starts with a very large set of distributed files that document the date and time that users visited Web pages (including a user id), and also specify whether those users’ computers later become compromised by malware. The computation then goes through the files trying to identify Web pages that are possible sources of contamination by cross-referencing the browser history for each user id with records of whether the user’s machine is compromised. Web sites that figure prominently in the average browsing history of a cohort of machines that were subsequently compromised are suspect.

As Grossman points out, the task itself need not be a good way of finding Web sites hosting malware. It only needs to be a task sufficient to measure the performance of clouds for data intensive tasks:

We call MalStone stylized since we do not argue that this is a useful or effective algorithm for finding compromised sites. Rather, we point out that if the log data is so large that it requires large numbers of disks to manage it, then computing something as simple as this ratio can be computationally challenging. For example, if the data spans 100 disks, then the computation cannot be done easily with any of the databases that are common today. On the other hand, if the data fits into a database, then this statistic can be computed easily using a few lines of SQL.

There are two benchmarks, MalStone A and MalStone B. MalStone A computes a global figure for each Web site for all times included in the logs; MalStone B computes the figures by Web site by week. The datasets involved are quite large, with up to 100 TB of data.

MalStone A-10 uses 10 billion records so that in total there is 1 TB of data. Similarly, MalStone A-100 requires 100 billion records and MalStone A-1000 requires 1 trillion records. MalStone B-10, B-100 and B-1000 are defined in the same way.

You can read more about the benchmarks and get the actual source code for them at code.google.com/p/malgen/.

Earlier this summer Grossman and his team at the Open Cloud Consortium (OCC) announced results comparing Hadoop (the environment used by Facebook, Yahoo, and others) with the open-source cloud architecture Sector. Grossman describes Sector in a blog post as “an open source cloud written in C++ for storing, sharing and processing large data sets.” The OCC uses 10 GbE circuits on the National Lambda Rail (NLR) as the backbone for its testbed, and runs its tests over the NLR between San Diego, Los Angeles, Chicago and Washington, DC.

The preliminary results are interesting. They show significant differences between Hadoop and Sector, but also differences between Hadoop with Hadoop’s implementation of MapReduce, and Hadoop using Streams and coding MalStone in Python. The most significant differences are for MalStone B, where performance ranges from 841 minutes with Hadoop/MapReduce to 44 minutes with Sector. Even the Hadoop/Streams implementation, which is considerably faster than the MapReduce, comes in at nearly 143 minutes. The range there is 14 hours to 44 minutes, worst-case to best.

These results highlight the importance of making sure your cloud is designed to solve the problem at hand. And as MalStone and other cloud benchmarking efforts continue to evolve users will have even more robust tools to make informed decisions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This