Benchmarking Your Cloud

By John E. West

July 16, 2009

It was inevitable that with all the hype and marketing dollars directed at cloud computing these days that someone would eventually start trying to use them for real work. Of course, this puts a nasty wrinkle into marketing plans because once people starting using them for real work, then there are actual performance results. The results themselves aren’t too troubling because they are usually point cases, and negative messages are easily explained away by calling on the vagaries of a particular software stack and the giving away of snazzy memory sticks. But then the results lead the engineering-minded to wonder whether all of the available cloud computing alternatives behave in the same way, and if not which of the them might be best suited for a particular task. This leads to standardized testing and then, before you know it, we have full-fledged benchmarking on our hands.

Not great for marketing departments, but wonderful for customers. And the good news for customers — and potential customers — of cloud computing is that the community is starting to think seriously about benchmarking the performance of clouds.

There is a long history in benchmarking computer hardware or software components tests that isolate, as much as possible, a single feature of the system under test to facilitate comparisons. In order to make sure that the comparisons are valid, benchmarks like those from the TPC require testing be done in a managed environment with a fixed configuration that can be completely described and replicated for future testing. Further, since the TPC benchmarks focus on transactional database systems they also require adherence to the ACID properties, notably (as we’ll see in a moment) the coherence property.

But, when you think about it, this benchmarking model isn’t really a good match for clouds, where the service model is designed to be dynamic, distributed and robust. One of the key selling points for cloud infrastructure is that it can grow and shrink with a particular user’s demand, and workload can be shifted to wherever it is most advantageously served. In this environment the hardware may change over time, as may parts of the system software stack. Furthermore creating a reliable distributed processing environment usually means replicating parts of the data, and making these data available in the presence of communications failures means relaxing some of the traditional guarantees on data consistency (Amazon’s cloud storage offering only guarantees eventual consistency, for example).

So, while traditional approaches to benchmarking, and traditional benchmarks for that matter, will provide some useful information about the performance of clouds, the traditional testing philosophy behind most benchmarks today doesn’t lend itself to creating a test of merit that enables comparison of two clouds with one another in a way that takes into account the very features that make them interesting technology solutions for certain classes of problems in the first place.

The general topic is dealt with ably in an interesting paper [PDF] from DBTest ’09. In that paper the authors outline what they’re looking for in a cloud benchmark: something that doesn’t require a static system configuration, reflects the ability of the cloud to adapt to changing load, assesses robustness to failures of various components, and includes the full cloud software stack rather than just one component.

That’s a pretty tall order, and amounts to something akin to not just being able to demonstrate that your 1996 Porsche 993 isn’t just faster than a Corvette, but that it’s cooler. Speed you can measure; “cool” is sufficiently general that it’s pretty hard to quantify. Still, you have to have a goal, and working on the problem is certainly worthwhile (not least because then my friends Steve and John could avoid a lot of pointless bar fights). The authors do manage a pretty reasonable suggestion for a benchmark in the paper, which I commend to your summer beach reading lists.

There are some cloud benchmarking efforts already well past the paper stage. Cloudstone, for example, is a benchmark out of UC Berkeley designed to measure the performance of clouds designed to run Web 2.0 applications. And there is also MalStone, a benchmark of more direct interest to the HPC crowd since it is designed specifically to allow the comparison of clouds designed for data intensive computing.

As described by Robert Grossman, the director of the National Center for Data Mining at the University of Illinois at Chicago and chair of the Open Cloud Consortium, MalStone is a “stylized analytic computation of a type that is common in data intensive computing.” The MalStone computation starts with a very large set of distributed files that document the date and time that users visited Web pages (including a user id), and also specify whether those users’ computers later become compromised by malware. The computation then goes through the files trying to identify Web pages that are possible sources of contamination by cross-referencing the browser history for each user id with records of whether the user’s machine is compromised. Web sites that figure prominently in the average browsing history of a cohort of machines that were subsequently compromised are suspect.

As Grossman points out, the task itself need not be a good way of finding Web sites hosting malware. It only needs to be a task sufficient to measure the performance of clouds for data intensive tasks:

We call MalStone stylized since we do not argue that this is a useful or effective algorithm for finding compromised sites. Rather, we point out that if the log data is so large that it requires large numbers of disks to manage it, then computing something as simple as this ratio can be computationally challenging. For example, if the data spans 100 disks, then the computation cannot be done easily with any of the databases that are common today. On the other hand, if the data fits into a database, then this statistic can be computed easily using a few lines of SQL.

There are two benchmarks, MalStone A and MalStone B. MalStone A computes a global figure for each Web site for all times included in the logs; MalStone B computes the figures by Web site by week. The datasets involved are quite large, with up to 100 TB of data.

MalStone A-10 uses 10 billion records so that in total there is 1 TB of data. Similarly, MalStone A-100 requires 100 billion records and MalStone A-1000 requires 1 trillion records. MalStone B-10, B-100 and B-1000 are defined in the same way.

You can read more about the benchmarks and get the actual source code for them at code.google.com/p/malgen/.

Earlier this summer Grossman and his team at the Open Cloud Consortium (OCC) announced results comparing Hadoop (the environment used by Facebook, Yahoo, and others) with the open-source cloud architecture Sector. Grossman describes Sector in a blog post as “an open source cloud written in C++ for storing, sharing and processing large data sets.” The OCC uses 10 GbE circuits on the National Lambda Rail (NLR) as the backbone for its testbed, and runs its tests over the NLR between San Diego, Los Angeles, Chicago and Washington, DC.

The preliminary results are interesting. They show significant differences between Hadoop and Sector, but also differences between Hadoop with Hadoop’s implementation of MapReduce, and Hadoop using Streams and coding MalStone in Python. The most significant differences are for MalStone B, where performance ranges from 841 minutes with Hadoop/MapReduce to 44 minutes with Sector. Even the Hadoop/Streams implementation, which is considerably faster than the MapReduce, comes in at nearly 143 minutes. The range there is 14 hours to 44 minutes, worst-case to best.

These results highlight the importance of making sure your cloud is designed to solve the problem at hand. And as MalStone and other cloud benchmarking efforts continue to evolve users will have even more robust tools to make informed decisions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This