LexisNexis Brings Its Data Management Magic To Bear on Scientific Data

By John E. West

July 23, 2009

LexisNexis has built its business on bringing together billions of different records from many different sources. Its data and tools allow customers to query those data to find the names of everyone who registered a car last week in Miami with a license plate that has an “O” and an “H” in it. Recently the company has been working with Sandia National Laboratories to understand whether the LexisNexis data tools might help researchers manage and understand the flood of data coming from the supercomputers and high resolution scientific instruments that drive discovery today.

LexisNexis specializes in data — lots of data — about you, me, and just about every other person in the US that has any kind of digital fingerprint. These data come from thousands of databases about all kinds of transactions and public records that are kept by companies and agencies around the US. But just having the data isn’t very useful; LexisNexis has to be able to access it on behalf of their customers to help them make complex decisions about what businesses to start or stop, what 500,000 people to send a packet of coupons too, or which John Smith living in California to get a search warrant for.

That infrastructure that LexisNexis uses to do all of this is called the Data Analytics Supercomputer (DAS), and it has been in development and use by the company for a decade supporting its own data services business. The DAS has both hardware and software components, and if you want to host your own internal DAS, it comes as a complete solution ready to run. John Simmons, the CTO for the LexisNexis Special Services Group, explains that while the hardware is based on standard Intel Xeon processors and motherboards from Supermicro, the configuration is specialized to facilitate the rapid processing of very large data streams. So the company specs, configures and assembles the hardware along with the software into a complete system.

A DAS is comprised of some combination of both data refinery and data delivery nodes. These nodes handle the processing of data queries and presentation of results, and up to 500 of them can be connected together by a non-blocking switch (from Force10 Networks, again a standard commercial part) that allows the nodes participating in an operation to cooperate directly with one another. A DAS larger than 500 nodes can be assembled by linking together multiple 500-node sub-assemblies. The system runs a standard Linux kernel with non-essential services turned off to reduce OS jitter and improve performance.

How does it all perform? The company says that in 2008 one of its DAS systems was 14 percent faster than the then TeraSort champion, Hadoop, on a cluster that used less than half of the hardware. Interestingly, LexisNexis also claims that its approach needed 93 percent less code that the Hadoop solution, and this is a big part of the system’s appeal.

LexisNexis achieves such work specification efficiency by using its own Enterprise Control Language (ECL), a declarative language developed specifically by the company to allow non-specialist users to construct queries. LexisNexis productivity studies show that ECL is about five times more efficient than SQL for specifying the same tasks, and Simmons gave me an example of a specific data function that was coded in 590 lines of assembly, 90 lines of C, and just two lines of ECL. When you are building a data query engine that has to be accessible by a community of non-specialists, ease of use matters.

There are other commercial solutions in this area, of course. We’ve written about Pervasive Software’s DataRush framework before, as well as IBM’s System S. But none of those have the maturity or credibility at scale as the LexisNexis solution.

Even the unimaginative can conjure scenarios in which this kind of capability might be of interest to law enforcement and intelligence agencies, but LexisNexis has been trying something new with its big data engine: scientific data analysis. This week the company started talking about a year-long partnership it’s had with Sandia National Laboratories to use the DAS to understand and manage the kinds of very large scientific datasets that high resolution instruments and supercomputers routinely produce.

Richard Murphy of Sandia explained that they have been evaluating how the DAS could fit into the scientific computing workflow. For example, Sandia scientists are experimenting with the DAS in an intermediate step in the workflow to identify regions of interest or high correlation with the occurrence of related phenomena in different datasets. These regions can then be extracted, say for visual analysis, or used as input to different applications in derived computations.

One of the benefits of the DAS that Sandia sees for its users beyond the capability to rapidly process very large datasets is the relative simplicity of the ECL — scientists can stay focused on their domains yet still construct relatively complex queries of their data without a lot of extra cognitive overhead.

The DAS also has potential for Sandia in analyzing the output of large ensembles of simulations — as you might find in climate scenario simulations, for example — all at once, and trying to find features and relationships across the entire ensemble of what could be hundreds of terabytes of output data. Murphy also talked about an application for the validation of scientific codes where the DAS would serve as the engine for comparing computed solutions with data collected from physical experiments. Early results have been promising, and Sandia is making plans for future efforts to take the work further.

Legacy approaches to data management and exploration have begun to sag and split under the strain of soaring data volumes. Mass storage archive systems are capable of preserving petabytes of data but don’t help users find it again. And traditional relational database management systems failed at helping us manage the breadth and complexity of scientific data. The LexisNexis solution, and technologies like it that are being developed to deal with petabyte-scale datasets from first principles, offer a departure from established thinking that may finally give us the tools we need to continue turning all those bits of data we produce and collect into information about the world around us.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This