LexisNexis Brings Its Data Management Magic To Bear on Scientific Data

By John E. West

July 23, 2009

LexisNexis has built its business on bringing together billions of different records from many different sources. Its data and tools allow customers to query those data to find the names of everyone who registered a car last week in Miami with a license plate that has an “O” and an “H” in it. Recently the company has been working with Sandia National Laboratories to understand whether the LexisNexis data tools might help researchers manage and understand the flood of data coming from the supercomputers and high resolution scientific instruments that drive discovery today.

LexisNexis specializes in data — lots of data — about you, me, and just about every other person in the US that has any kind of digital fingerprint. These data come from thousands of databases about all kinds of transactions and public records that are kept by companies and agencies around the US. But just having the data isn’t very useful; LexisNexis has to be able to access it on behalf of their customers to help them make complex decisions about what businesses to start or stop, what 500,000 people to send a packet of coupons too, or which John Smith living in California to get a search warrant for.

That infrastructure that LexisNexis uses to do all of this is called the Data Analytics Supercomputer (DAS), and it has been in development and use by the company for a decade supporting its own data services business. The DAS has both hardware and software components, and if you want to host your own internal DAS, it comes as a complete solution ready to run. John Simmons, the CTO for the LexisNexis Special Services Group, explains that while the hardware is based on standard Intel Xeon processors and motherboards from Supermicro, the configuration is specialized to facilitate the rapid processing of very large data streams. So the company specs, configures and assembles the hardware along with the software into a complete system.

A DAS is comprised of some combination of both data refinery and data delivery nodes. These nodes handle the processing of data queries and presentation of results, and up to 500 of them can be connected together by a non-blocking switch (from Force10 Networks, again a standard commercial part) that allows the nodes participating in an operation to cooperate directly with one another. A DAS larger than 500 nodes can be assembled by linking together multiple 500-node sub-assemblies. The system runs a standard Linux kernel with non-essential services turned off to reduce OS jitter and improve performance.

How does it all perform? The company says that in 2008 one of its DAS systems was 14 percent faster than the then TeraSort champion, Hadoop, on a cluster that used less than half of the hardware. Interestingly, LexisNexis also claims that its approach needed 93 percent less code that the Hadoop solution, and this is a big part of the system’s appeal.

LexisNexis achieves such work specification efficiency by using its own Enterprise Control Language (ECL), a declarative language developed specifically by the company to allow non-specialist users to construct queries. LexisNexis productivity studies show that ECL is about five times more efficient than SQL for specifying the same tasks, and Simmons gave me an example of a specific data function that was coded in 590 lines of assembly, 90 lines of C, and just two lines of ECL. When you are building a data query engine that has to be accessible by a community of non-specialists, ease of use matters.

There are other commercial solutions in this area, of course. We’ve written about Pervasive Software’s DataRush framework before, as well as IBM’s System S. But none of those have the maturity or credibility at scale as the LexisNexis solution.

Even the unimaginative can conjure scenarios in which this kind of capability might be of interest to law enforcement and intelligence agencies, but LexisNexis has been trying something new with its big data engine: scientific data analysis. This week the company started talking about a year-long partnership it’s had with Sandia National Laboratories to use the DAS to understand and manage the kinds of very large scientific datasets that high resolution instruments and supercomputers routinely produce.

Richard Murphy of Sandia explained that they have been evaluating how the DAS could fit into the scientific computing workflow. For example, Sandia scientists are experimenting with the DAS in an intermediate step in the workflow to identify regions of interest or high correlation with the occurrence of related phenomena in different datasets. These regions can then be extracted, say for visual analysis, or used as input to different applications in derived computations.

One of the benefits of the DAS that Sandia sees for its users beyond the capability to rapidly process very large datasets is the relative simplicity of the ECL — scientists can stay focused on their domains yet still construct relatively complex queries of their data without a lot of extra cognitive overhead.

The DAS also has potential for Sandia in analyzing the output of large ensembles of simulations — as you might find in climate scenario simulations, for example — all at once, and trying to find features and relationships across the entire ensemble of what could be hundreds of terabytes of output data. Murphy also talked about an application for the validation of scientific codes where the DAS would serve as the engine for comparing computed solutions with data collected from physical experiments. Early results have been promising, and Sandia is making plans for future efforts to take the work further.

Legacy approaches to data management and exploration have begun to sag and split under the strain of soaring data volumes. Mass storage archive systems are capable of preserving petabytes of data but don’t help users find it again. And traditional relational database management systems failed at helping us manage the breadth and complexity of scientific data. The LexisNexis solution, and technologies like it that are being developed to deal with petabyte-scale datasets from first principles, offer a departure from established thinking that may finally give us the tools we need to continue turning all those bits of data we produce and collect into information about the world around us.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Launches Massive 100 Petaflops ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Japan Plans Super-Efficient AI Supercomputer

November 28, 2016

Japan intends to deploy a 130-petaflops (half-precision) supercomputer by early 2018 as part of a 19.5 billion yen ($173 million) project called ABCI (for AI Bridging Cloud Infrastructure). Read more…

By Tiffany Trader

AWS Launches Massive 100 Petaflops ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This