LexisNexis Brings Its Data Management Magic To Bear on Scientific Data

By John E. West

July 23, 2009

LexisNexis has built its business on bringing together billions of different records from many different sources. Its data and tools allow customers to query those data to find the names of everyone who registered a car last week in Miami with a license plate that has an “O” and an “H” in it. Recently the company has been working with Sandia National Laboratories to understand whether the LexisNexis data tools might help researchers manage and understand the flood of data coming from the supercomputers and high resolution scientific instruments that drive discovery today.

LexisNexis specializes in data — lots of data — about you, me, and just about every other person in the US that has any kind of digital fingerprint. These data come from thousands of databases about all kinds of transactions and public records that are kept by companies and agencies around the US. But just having the data isn’t very useful; LexisNexis has to be able to access it on behalf of their customers to help them make complex decisions about what businesses to start or stop, what 500,000 people to send a packet of coupons too, or which John Smith living in California to get a search warrant for.

That infrastructure that LexisNexis uses to do all of this is called the Data Analytics Supercomputer (DAS), and it has been in development and use by the company for a decade supporting its own data services business. The DAS has both hardware and software components, and if you want to host your own internal DAS, it comes as a complete solution ready to run. John Simmons, the CTO for the LexisNexis Special Services Group, explains that while the hardware is based on standard Intel Xeon processors and motherboards from Supermicro, the configuration is specialized to facilitate the rapid processing of very large data streams. So the company specs, configures and assembles the hardware along with the software into a complete system.

A DAS is comprised of some combination of both data refinery and data delivery nodes. These nodes handle the processing of data queries and presentation of results, and up to 500 of them can be connected together by a non-blocking switch (from Force10 Networks, again a standard commercial part) that allows the nodes participating in an operation to cooperate directly with one another. A DAS larger than 500 nodes can be assembled by linking together multiple 500-node sub-assemblies. The system runs a standard Linux kernel with non-essential services turned off to reduce OS jitter and improve performance.

How does it all perform? The company says that in 2008 one of its DAS systems was 14 percent faster than the then TeraSort champion, Hadoop, on a cluster that used less than half of the hardware. Interestingly, LexisNexis also claims that its approach needed 93 percent less code that the Hadoop solution, and this is a big part of the system’s appeal.

LexisNexis achieves such work specification efficiency by using its own Enterprise Control Language (ECL), a declarative language developed specifically by the company to allow non-specialist users to construct queries. LexisNexis productivity studies show that ECL is about five times more efficient than SQL for specifying the same tasks, and Simmons gave me an example of a specific data function that was coded in 590 lines of assembly, 90 lines of C, and just two lines of ECL. When you are building a data query engine that has to be accessible by a community of non-specialists, ease of use matters.

There are other commercial solutions in this area, of course. We’ve written about Pervasive Software’s DataRush framework before, as well as IBM’s System S. But none of those have the maturity or credibility at scale as the LexisNexis solution.

Even the unimaginative can conjure scenarios in which this kind of capability might be of interest to law enforcement and intelligence agencies, but LexisNexis has been trying something new with its big data engine: scientific data analysis. This week the company started talking about a year-long partnership it’s had with Sandia National Laboratories to use the DAS to understand and manage the kinds of very large scientific datasets that high resolution instruments and supercomputers routinely produce.

Richard Murphy of Sandia explained that they have been evaluating how the DAS could fit into the scientific computing workflow. For example, Sandia scientists are experimenting with the DAS in an intermediate step in the workflow to identify regions of interest or high correlation with the occurrence of related phenomena in different datasets. These regions can then be extracted, say for visual analysis, or used as input to different applications in derived computations.

One of the benefits of the DAS that Sandia sees for its users beyond the capability to rapidly process very large datasets is the relative simplicity of the ECL — scientists can stay focused on their domains yet still construct relatively complex queries of their data without a lot of extra cognitive overhead.

The DAS also has potential for Sandia in analyzing the output of large ensembles of simulations — as you might find in climate scenario simulations, for example — all at once, and trying to find features and relationships across the entire ensemble of what could be hundreds of terabytes of output data. Murphy also talked about an application for the validation of scientific codes where the DAS would serve as the engine for comparing computed solutions with data collected from physical experiments. Early results have been promising, and Sandia is making plans for future efforts to take the work further.

Legacy approaches to data management and exploration have begun to sag and split under the strain of soaring data volumes. Mass storage archive systems are capable of preserving petabytes of data but don’t help users find it again. And traditional relational database management systems failed at helping us manage the breadth and complexity of scientific data. The LexisNexis solution, and technologies like it that are being developed to deal with petabyte-scale datasets from first principles, offer a departure from established thinking that may finally give us the tools we need to continue turning all those bits of data we produce and collect into information about the world around us.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This