LexisNexis Brings Its Data Management Magic To Bear on Scientific Data

By John E. West

July 23, 2009

LexisNexis has built its business on bringing together billions of different records from many different sources. Its data and tools allow customers to query those data to find the names of everyone who registered a car last week in Miami with a license plate that has an “O” and an “H” in it. Recently the company has been working with Sandia National Laboratories to understand whether the LexisNexis data tools might help researchers manage and understand the flood of data coming from the supercomputers and high resolution scientific instruments that drive discovery today.

LexisNexis specializes in data — lots of data — about you, me, and just about every other person in the US that has any kind of digital fingerprint. These data come from thousands of databases about all kinds of transactions and public records that are kept by companies and agencies around the US. But just having the data isn’t very useful; LexisNexis has to be able to access it on behalf of their customers to help them make complex decisions about what businesses to start or stop, what 500,000 people to send a packet of coupons too, or which John Smith living in California to get a search warrant for.

That infrastructure that LexisNexis uses to do all of this is called the Data Analytics Supercomputer (DAS), and it has been in development and use by the company for a decade supporting its own data services business. The DAS has both hardware and software components, and if you want to host your own internal DAS, it comes as a complete solution ready to run. John Simmons, the CTO for the LexisNexis Special Services Group, explains that while the hardware is based on standard Intel Xeon processors and motherboards from Supermicro, the configuration is specialized to facilitate the rapid processing of very large data streams. So the company specs, configures and assembles the hardware along with the software into a complete system.

A DAS is comprised of some combination of both data refinery and data delivery nodes. These nodes handle the processing of data queries and presentation of results, and up to 500 of them can be connected together by a non-blocking switch (from Force10 Networks, again a standard commercial part) that allows the nodes participating in an operation to cooperate directly with one another. A DAS larger than 500 nodes can be assembled by linking together multiple 500-node sub-assemblies. The system runs a standard Linux kernel with non-essential services turned off to reduce OS jitter and improve performance.

How does it all perform? The company says that in 2008 one of its DAS systems was 14 percent faster than the then TeraSort champion, Hadoop, on a cluster that used less than half of the hardware. Interestingly, LexisNexis also claims that its approach needed 93 percent less code that the Hadoop solution, and this is a big part of the system’s appeal.

LexisNexis achieves such work specification efficiency by using its own Enterprise Control Language (ECL), a declarative language developed specifically by the company to allow non-specialist users to construct queries. LexisNexis productivity studies show that ECL is about five times more efficient than SQL for specifying the same tasks, and Simmons gave me an example of a specific data function that was coded in 590 lines of assembly, 90 lines of C, and just two lines of ECL. When you are building a data query engine that has to be accessible by a community of non-specialists, ease of use matters.

There are other commercial solutions in this area, of course. We’ve written about Pervasive Software’s DataRush framework before, as well as IBM’s System S. But none of those have the maturity or credibility at scale as the LexisNexis solution.

Even the unimaginative can conjure scenarios in which this kind of capability might be of interest to law enforcement and intelligence agencies, but LexisNexis has been trying something new with its big data engine: scientific data analysis. This week the company started talking about a year-long partnership it’s had with Sandia National Laboratories to use the DAS to understand and manage the kinds of very large scientific datasets that high resolution instruments and supercomputers routinely produce.

Richard Murphy of Sandia explained that they have been evaluating how the DAS could fit into the scientific computing workflow. For example, Sandia scientists are experimenting with the DAS in an intermediate step in the workflow to identify regions of interest or high correlation with the occurrence of related phenomena in different datasets. These regions can then be extracted, say for visual analysis, or used as input to different applications in derived computations.

One of the benefits of the DAS that Sandia sees for its users beyond the capability to rapidly process very large datasets is the relative simplicity of the ECL — scientists can stay focused on their domains yet still construct relatively complex queries of their data without a lot of extra cognitive overhead.

The DAS also has potential for Sandia in analyzing the output of large ensembles of simulations — as you might find in climate scenario simulations, for example — all at once, and trying to find features and relationships across the entire ensemble of what could be hundreds of terabytes of output data. Murphy also talked about an application for the validation of scientific codes where the DAS would serve as the engine for comparing computed solutions with data collected from physical experiments. Early results have been promising, and Sandia is making plans for future efforts to take the work further.

Legacy approaches to data management and exploration have begun to sag and split under the strain of soaring data volumes. Mass storage archive systems are capable of preserving petabytes of data but don’t help users find it again. And traditional relational database management systems failed at helping us manage the breadth and complexity of scientific data. The LexisNexis solution, and technologies like it that are being developed to deal with petabyte-scale datasets from first principles, offer a departure from established thinking that may finally give us the tools we need to continue turning all those bits of data we produce and collect into information about the world around us.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This