Intel Brings Parallel Computing to High School

By John E. West

July 30, 2009

Earlier this month Intel announced it was helping lead a parallel programming experience for high school students. The three-day “Clubhouse Parallel Universe Boot-Camp” was held at Brooklyn Technical High School (BTHS). This idea is consistent with Intel’s overall drive to help develop the expertise that applications developers — and ultimately users — need to get the most out of the company’s chips. There is a clear business driver here, but in this case, the business driver lines up well with the broader societal goals of enabling users and developers to do more with technology.

The project started with Jeffrey Birnbaum from the Bank of America. Birnbaum has lots of experience working on lock-free and parallel programming techniques for “low latency high throughput messaging systems” of the kind you find in finance. Birnbaum’s idea started with interactions he had with a high school student interested in parallel programming, and he saw an opportunity to start at the high school level to teach students to “think parallel.”

“If students start thinking parallel when they are first introduced to software development, it opens the door to new creative solutions that more experienced programmers might not attempt. In essence, the student minds have not been spoiled by old serial programming methodologies and experimentation when multi-core multi-socket systems did not exist,” says Birnbaum. “We are at the beginning of a new age in programming where the exploitation of advanced multi socket multicore systems to solve new and interesting problems requires developers who combine a “think parallel” mindset with the skill to execute.”

Birnbaum hooked up with Intel’s Bob Chesebrough, and they got together to implement the vision in the pilot program at BTHS. Fifteen students participated in the first workshop that wrapped up last week, and they wrote real code on hardware donated by Intel, IBM, and BLADE Network Technologies.

I think these kinds of efforts are tremendously important for the future of our community. Intel’s Head Software Evangelist, James Reinders, took part in the event and gave me some time over email to answer a few questions.

—–

HPCwire: Why target high schoolers? Parallel programming has traditionally been left to college. Are the students ready to grasp the concepts?

James Reinders: Because they are ready to learn it as they learn programming, there is no reason to wait. Of all the programmers, these are the ones that will be doing parallel programming their entire careers. Virtually every new computer is ready for parallel programming — multicore processors are everywhere now. So, programming is parallel programming — it is fundamental.

I’d say parallel programming in the past has been a graduate level activity because parallel programming has been a niche. It was not graduate level because it is too hard — it was graduate level because the machines to programming in parallel were scarce, and the topic affected only a minority of programmers. Now that it is fundamental, it is time to introduce early on in learning about programming. It should be part of teaching computer programming, not tacked on afterwards.

My first languages were assembly and BASIC. Neither taught structured programming nor data structures particularly. My professors whined about getting students that needed to be re-taught — some said it was worse than having us come in knowing nothing. I’m not sure I agree — but it’s absolutely true that teaching minds that are uncluttered has advantages.

I can tell you that the students we got were definitely ready for the material!

HPCwire: Regarding the involvement of Bank of America, it’s odd (but great) to see someone from the user side of the community so active in leading this effort. How did the concept develop? What made Intel want to team up with Birnbaum and BoA on this?

Reinders: Jeff Birnbaum is an energetic guy who’s hard to say “no” to! I really enjoy his enthusiasm — he knew we had an interest in teaching students but we were focused on universities. About the time we were crossing the one-thousand universities in our teach-parallel program (we started with 40 universities in 2006) — Jeff was the one that told us we should take this to a high school. For a few of us, he didn’t need to twist our arms, and we knew that actions speak louder than words.

Jeff pushed us to think about this seriously, secured some equipment support from IBM and Blade Network Technologies, and taught some himself on our day 3 — bringing together the concepts and making a deep application of it in analyzing some real code he shared from his work. Jeff also encouraged us to come out to New York City to teach a High School — and that seemed to be a fine idea, especially after we had the great fortune to hook up with Randy Asher, the principle at Brooklyn Technical High School.

HPCwire: Is this a one-off event, or will there be others? How did you get hooked up with Brooklyn Technical High School?

Reinders: I’m sure we’ll do more, but I’m not sure the exact form. We will be taking the student and teacher feedback, and seeing what we can do. Our small team of engineers from Intel that taught this are top notch experts with full time jobs. We might be able to sneak out of our jobs a time or two without our management missing us too much, but we might be missed if we tried to do this a lot more! With the universities, we started small and learned how to scale. We learned what worked and how to teach others to teach by sharing what we learned and developed. That’s the partnership that worked with universities. Something like that might be in the future for high schools. I hope so. Lots of work lies ahead to make it happen.

We actually had no pre-existing relationship with Brooklyn Technical High School — we got a few contacts in the New York school system and made a few cold calls. Next thing you know, we talked with Randy Asher. He’s the type of principle you want at a school — a huge advocate for bringing in challenge for the student and infectious in his commitment to make things happen. We were hooked. Randy’s the guy already talking about doing this again, and for more time (to earn credits), etc. I know all of us from Intel found it rewarding, and with Jeff and Randy pushing now, well, we probably have to do this again!

HPCwire: The workshop looks like three full days of student time — how did the school respond to this? Do the students have to make up the time?

Reinders: We did it during the summer, so the students didn’t have to take time off school. Doing it during school might be an option next time. One way we have to compete with summer jobs and summer vacations, and the other way we’d need to have them take off time from school for school (seems a bit funny). I’m not sure — but I suspect one or two weeks in summer will tend to work out better until we figure out how to incorporate content into regular computer science classes in high school. I think we’re learning things to let us consider both.

HPCwire: Now that the workshop is concluded can you give me some reactions from the teachers and students? Did they seem to get it? Enjoy it? Were they good at it? What did Intel learn about teaching parallel in this age group that will help shape your next event?

Reinders: We had 16 high school students plus five high school teachers in our class. We ultimately mixed teachers and students — and that worked very well. We did a short three-day — but could easily have expanded to a couple weeks.

One student told us the first day was boring, another said it was the best thing ever. They both actually got something out of it, but had different expectations. Their direct feedback is helpful. There is a lot of “let’s just DO IT” energy in the room. They had great attention span, and were very engaged, but were constantly eager to work on the computers. More lab time would have been popular I think. It was a little less than half the classroom time over three days. We split the rest of time between lectures and some hands-on exercises to simulate computer algorithms with activities — to help make things intuitive.

They all did very well. No student was “lost” by any means. Each exercise challenges each student in a different way — but ultimately they all understood the concepts and learned what we were hoping they would. By the third day, we had them changing our “Destroy the Castle” program (http://software.intel.com/en-us/articles/code-demo-destroy-the-castle/) — and we saw a lot of knowledge being used that they didn’t have the first day of the class. They added parallelism and improved the game a great deal (we gave it to them with the parallel programming removed from our downloadable version).

What did we learn? We validated that teaching at the high school level is appropriate. Those of us teaching got a little better handle on pacing and that will help us. We really reinforced the need to present basic concepts multiple ways (to drill home what a “data race” is, and “task decomposition”). We debated the relative merits, timing, etc. — I’m sure we have a better feel for it now. We also know if we expand time for the class, we would expand the hands-on time to be a higher percentage of the time. I’m interested to talk more with the high school teachers we had in our class, and see what more feedback they have. I think we have to digest the experience and feedback more — and we’ve learned a lot that will help us next time.

Bottom-line: if someone else considers doing this, we have experience that we would share to help others! Now, if we can find the time to write it down, we will. Hopefully soon.

HPCwire: Was the hardware taken on site? Were there logistical challenges (from the mundane, like cabbing a cluster across NY, to the specific, like was there enough power) and how did you address them?

Reinders: As funny as a 32-core cluster in a New York taxi would have been, we didn’t go that way. We used the power of the Internet. Blade Network Technology loaned space and expertise in their Santa Clara facility — and IBM provided the 32 core cluster, and Intel provided four 8-core machines. We used them remotely over the Internet from New York. In New York, we used BTHS machines (every student had a dual-core machine) and we brought along 16 dual-core laptops, and an 8-core machine. Those we shipped, and they were just here at BTHS for us. One of the benefits of being at BTHS was that they had plenty of capability for power and cooling for us, that was easy. It is often a concern as you look where to teach, but at BTHS that was not an issue — they have fantastic facilities, which made this easy. And their alumni association kicked in money to feed the students lunch — which was very much appreciated too.

HPCwire: I suspect this effort might inspire others to do something similar in their own community. Would you welcome others to adopt the curriculum in their own communities? What kind of support would there be for those wanting to take such a step?

Reinders: I’d love to be contacted by people with a serious interest in doing this at other high schools. They can drop a note to me at Intel — e-mail: [email protected].

HPCwire: I know that Intel has a big effort in education, so I’m going to do the natural thing and ask you to boil it down to a couple sentences so readers are more aware of the range of your efforts.

Reinders: We know that young people are the key to solving global challenges, and a solid math and science foundation coupled with skills such as critical thinking, collaboration, and digital literacy are crucial for their success. That is why we get directly involved in education programs, advocacy, and technology access to enable tomorrow’s innovators. Intel’s education outreach includes K-12 education, education competitions, high education and outside the classroom programs — see http://intel.com/education. Focusing on our outreach for computer science instruction in particular — we have our Intel Academic Program (“Teach Parallel”) that instructors can learn more about at http://intel.com/software/college.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This