Penguin Adds HPC On-Demand Service

By Michael Feldman

August 12, 2009

Linux cluster maker Penguin Computing hopped on the HPC-in-a-cloud bandwagon this week with the announcement of its HPC on-demand service. Called Penguin On Demand (POD), the service consists of an HPC compute infrastructure whose capacity can be rented on a pay-as-you-go basis or through a monthly subscription.

As it exists today, the POD infrastructure consists of 1200 Xeon cores spread over a number of clusters at a single facility. Penguin offers a choice of GigE or DDR InfiniBand interconnects and the option to tap into NVIDIA Tesla GPU computing hardware. By cloud standards the number of cores is tiny. But since Penguin also sells systems for a living, it would be relatively easy for them to scale up the infrastructure rather quickly if customer demand warranted additional capacity.

According to Penguin, the on-demand facility has sufficient bandwidth to allow the transfer of reasonably large data files directly to POD over the Internet. The company also offer a “disk caddy” service that allows the transfer of 1 TB+ files overnight. The disks are provided as part of the service and are actually owned by the customer and are returned to them once the data has been transferred to POD storage.

The software stack consists of CentOS, a community-supported OS based on Red Hat Enterprise Linux, as well as the company’s Scyld ClusterWare cluster management software. “Scyld enables us to rapidly provision a set of compute nodes for our customers based on their demand — so we can scale up and scale down efficiently,” says Penguin Computing CEO Charles Wuischpard.

Penguin is aiming the POD at a variety of HPC verticals. According to Wuischpard, the initial interest came from the life sciences sector, but they have recently seen interest from a number of Fortune 500 manufacturing companies and some smaller hedge funds firms.

Users with in-house Penguin systems can get access to the POD service via the Scyld software suite. Since Scyld ClusterWare includes TORQUE and offers a scheduling package called TaskMaster, policies in the scheduling software can be set such that when a particular threshold is reached, jobs submitted on the local resource are automatically redirected to the POD system.

Unlike generic cloud computing set-ups like Amazon’s EC2, user applications run directly on the compute nodes without virtualization in order to maximize performance. “POD is geared strictly towards applications that thrive in an HPC environment and would otherwise be starved for performance on a virtualized cloud computing environment,” explains Wuischpard.

In that sense, it’s not really a cloud in the classic sense (if there is such a thing), but rather a dedicated infrastructure built for on-demand HPC. In fact, the model used by Penguin is the same as most HPC on-demand offerings, such as IBM’s Computing On Demand service and R Systems’ dedicated hosting service. Thus far, a virtualized purpose-built HPC cloud with elastic capacity has yet to appear.

At the hardware level, the biggest criticism of general-purpose clouds is that they lack low latency interconnects so important to tightly-coupled MPI applications. As pointed at recently by Ian Foster, for short running HPC applications this may not be much of an issue. But for codes expected to execute for hours, days, or even longer, fast server-to-server communication is all but mandatory. Since at least some of the POD hardware includes InfiniBand-equipped servers, the service offers this natural advantage.

Setting up a POD account requires some initial hand-holding with Penguin technical staff. They will help set up the compute environment, explain the account management features, and answer any questions. After that, the POD service can be accessed via SSH to run user applications directly. If a customer requires more assistance, Penguin techies are available (via their Customer Portal) to help with issues that might come up or to help users squeeze more performance from user codes.

According to Penguin, their on-demand service is priced to provide a significant improvement in price-performance for HPC applications when compared to running on traditional cloud computing offerings. (The implication is that you will pay more per CPU-hour than for, say, EC2, but better performance will more than offset the price premium.) “Users pay only for the core hours that they use,” says Wuischpard. “Monthly contracts are available, which provide for a reduction in the average cost per core hour. And yes, we do have the concept of ‘roll-over’ hours!”

At this point, Penguin is not offering SLAs or QoS guarantees in the general offering. But, according to Wuischpard, these could be implemented if a customer has such a requirement. He says they do guarantee that if a job fails because of a POD hardware failure, then it can be rerun at no cost.

From a business point of view, the OEM-as-cloud-provider will be an interesting model to follow. If margins continue to shrink on commodity-based clusters, selling compute on-demand services may offer a natural way to tap into new revenue streams. As pointed out by many cloud gazers, the largest compute utility today is essentially being run out of the back of a bookstore. Renting CPU cycles from a system vendor would seem at least as reasonable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This