IBM Computing on Demand Evolves Toward Cloud Computing Service

By Michael Feldman

August 19, 2009

As IT budgets have gotten squeezed, more customers are looking at cloud computing as a way to avoid up-front capital costs, while getting access to as many CPU cycles as they need. In response, all the big IT firms are scrambling to develop a cloud computing product and services strategy, and IBM is no exception.

IBM has actually enjoyed a bit of head start at this. The company’s Deep Computing on Demand offering was launched back in June 2003, when everyone thought clouds were just fluffy white things in the sky. The original offering allowed HPC customers to rent remote access to supercomputer-type systems maintained by IBM. The initial infrastructure consisted of a Linux cluster of xSeries servers housed at a facility at the company’s Poughkeepsie, New York plant.

One of the first users of the service was GX Technology Corporation, a company that does seismic data imaging for the oil & gas industry. Besides dodging the expense of a cluster build-out, one of the big advantages of the on demand service was that the image processing turnaround was much quicker, since IBM could provision up to a thousand servers at a time, depending upon job size.

In general, the original Deep Computing on Demand service was designed for HPC applications across government, academia and industry. Over the next six years, IBM’s on demand offering evolved into a more general-purpose service, broadening its scope beyond traditional HPC, but keeping its computationally-intensive theme. Today it’s just called Computing on Demand and is run more like a cloud with the ability to create virtual images within individual servers.

David Gelardi, IBM’s vice president of Systems and Technology Group for Worldwide Client Centers, sees their current on demand offering as one of the ways in which a client can take advantage of cloud computing today. “In some sense you could think of Computing on Demand as almost a dress rehearsal for cloud,” he says. “We just didn’t know it.”

Currently, there are six IBM on demand centers strung across the US, Europe and Asia. In most cases customer data is stored locally, so bandwidth and latency dictates that the remote servers not be too remote. Because of that, the centers have tended to migrate to “centers of opportunity.” For example, when the oil & gas industry was booming, IBM maintained a center in Houston. As financial services got hot, they expanded into London and New York. Their newest center is in Japan.

Today the two most active sectors of IBM’s on demand service are the financial services industry and industrial design/automation. In the financial space, the applications that support risk compliance plus the creation and management of new types of financial instruments are the two big drivers right now. In the design space, one of the biggest clients is IBM itself, which periodically rents cycles to do large verification runs on its in-house integrated circuit designs.

The six centers currently house a total of 13,000 processors and 54 terabytes of storage. Customers are offered a choice of hardware: IBM Power CPUs (System p servers), or x86 CPUs (BladeCenter and System x servers) using either Intel Xeon and AMD Opteron processors. On the x86 side, both Linux and Microsoft Windows is supported, while the System p users get their choice of Linux or AIX. IBM-built management software, like the xCAT (Extreme Cluster Administration Toolkit), is layered on top for extra functionality.

At one time, IBM offered remote access to Blue Gene technology, but that’s no longer the case. Gelardi says they couldn’t find a broad enough market for the type of specialized technology and support inherent in a rent-a-Blue-Gene offering. The same goes for the Cell processor. He does, however, see the possibility of incorporating IBM mainframes into the on demand model since these represent fairly dear cycles when customers are getting ready to deploy a mainframe application into production.

As far as pricing goes, there are a number of factors that determine cost, including service commitment, technology requirements, and number of compute cycles. It’s actually quite similar to renting other types of infrastructure, like hotel rooms or cars. If you rent for a day, you get one price, for a week, you get a better deal, and so on. Similarly, you get charged a premium if you rent the compute equivalent of a Ferrari versus a Ford. Customer flexibility related to the Service Level Agreement (SLA) is also a consideration. For example, if a customer needs a 24/7 uptime, that’s going to drive the price up since spare servers have to be set aside to account for the inevitable hardware failures.

Gelardi noted that the $1 per CPU-hour for Sun Microsystems’ now defunct utility computing service might have sounded good, but was an unworkable business model. At some level, he probably wishes the Sun model would have succeeded since it would have kept prices up for all the players. “If I could get a dollar per CPU-hour, I could pave the roads with gold bullion,” he jokes.

Although the IBM compute service has grown beyond its rent-a-supercomputer roots, it still represents a fairly typical compute utility service. The plan, though, is to evolve into a more complex model, where customers will be offered four different types of cloud infrastructure: compute clouds, development clouds, test clouds, and storage clouds. The current offering will naturally evolve into the compute cloud, but IBM’s intention is to develop purpose-built infrastructure aimed at the other three functions.

IBM is already working on a proof-of-concept project with a large financial institution that is looking to give up to 10,000 programmers the ability to independently develop a database plus application service engine in the cloud. The idea for the developer is to be able to attach their workstation to a virtual machine that represents a much larger system. They will also have the ability to do a refresh, which resets the virtual machine back to its initial state.

Although IBM doesn’t supply hard numbers about the size of its computing on demand business, Gelardi says they have hundreds of clients that are currently active or have been active through the course of the program. When it started out in 2003, he says the service was generating revenue on the order of millions of dollars per year. At this point, he says, that has risen to tens of millions of dollars. “As we start to bring in the other types of clouds — the test clouds, development clouds, storage clouds — we’ll blow through the next level very quickly.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This