Chipmakers Keep Pouring on the Cores

By Michael Feldman

August 27, 2009

The latest and greatest chippery was on exhibit earlier this week at the Hot Chips conference, an IEEE-sponsored event that encourages microprocessor vendors to talk about their next generation silicon. The emphasis is on high performance chips, so a lot of the products and technology presented at the conference eventually end up in the hands of supercomputing users. While I didn’t attend the event myself — my wife discourages me from going to any out-of-town conferences with the word “hot” in them — I did make a point of following the proceedings from afar.

The star of the show this year was the upcoming Power7 processor being developed by IBM. This is the chip that will be powering NCSA’s “Blue Water” supercomputer, a 10-petaflop machine slated for deployment in 2011. Blue Waters will be the first production deployment of IBM PERCS, a set of technologies that is being partially funded by DARPA under its High Productivity Computing Systems (HPCS) program. For more pedestrian uses, the Power7 will also be used in IBM’s Power 5xx server line. The new chips should show up in IBM gear sometime in 2010.

The 45nm Power7 will come in four-, six-, and eight-core variants, and can execute up to four threads per core. Two dual-channel DDR3 memory controllers are integrated onto the chip, delivering an impressive 100GB/sec of memory bandwidth. IBM is claiming the chip’s raw performance is on the order of two to four times that of the Power6, but will consume about the same amount of power. No one is talking specifics in regard to clock speeds yet, but the first crop of Power7 processors will almost certainly have slower clocks than the current top-of-the-line 5.0GHz Power6 parts.

Besides increased core and thread count, probably the biggest new feature of the Power7 is the use of embedded DRAM (eDRAM) for on-chip L3 cache. This is the same technology that has been incorporated into IBM’s Blue Gene PowerPC ASICs for years in both Blue Gene/L and Blue Gene/P. Since eDRAM requires just one transistor per device, as opposed to six transistors for static RAM (SRAM), eDRAM takes up only a third as much space. Plus it draws only a fifth of the power of SRAM.

The result is that more L3 cache can be placed on-chip in order to help minimize main memory accesses — an increasingly important feature as core counts rise. In the case of the Power7, the designers opted for 32 MB of L3. For comparison, Intel’s upcoming 8-core Nehalem EX chip has 24 MB of L3, while AMD’s 12-core Magny-Cours chip will use just 12 MB.

Speaking of which, AMD supplied some additional details about its upcoming Magny-Cours Opteron silicon at the Hot Chips event. Apparently the CPU will be constructed from two six-core chip modules, mirroring Intel’s initial approach to its first quad-core Xeons (that AMD was so critical of at the time). Compared to the current generation six-core Istanbul chips, Magny-Cours will have lower clock frequencies in order to keep within the same power and thermal envelope.

To help keep all 12 cores fed with data, the new design incorporates four HyperTransport links (compared to three in Istanbul) and a quad-channel DDR3 memory controller (compared to a two-channel DDR2 controller in Istanbul). AMD is planning to release the dozen-core wonder in Q1 2010. Presumably they’ll start showing up in supercomputers in the same timeframe or shortly thereafter.

Not to be out-cored, Sun Microsystems was talking up its 16-core “Rainbow Falls” processor, the company’s third-generation UltraSPARC T series (Niagara) chip. Sun says this latest version will run up to 128 total threads simultaneously. Compared to other server microprocessor designs, Rainbow Falls is a bit unconventional. For example, the Sun engineers have banished L3 cache. Instead the CPU relies on 16 banks of L2 cache plus four “coherency units” that are used to help optimize data synchronization between main memory and cache.

Since Rainbow Falls follows the Niagara lineage, presumably it will be targeted to high-throughput datacenter workloads, such as Web serving, rather than technical computing. Although the floating point unit has been pumped up, it was Sun’s ill-fated “Rock” processor that probably had the best shot at supercomputing stardom. According to many reports, the company has pulled the plug on the Rock effort, leaving it without a high-end chip for scientific applications. To be sure, there’s even a question whether Rainbow Falls will see service, given the pending Oracle acquisition of Sun and its uncertain support of Sun’s hardware business. Nevertheless, the new chip is currently slated for its debut in 2010.

So with cores multiplying like rabbits on CPUs, what do we need GPUs for? At this year’s Hot Chips event, the GPU contingent was relatively silent. No new graphics processors were presented, although NVIDIA CEO Jen-Hsun Huang did manage to rain on the CPU parade a little bit by drawing attention to the disparity between performance gains between the two major processor architectures. Huang predicted that over the next six years GPU compute power will increase by a factor of 570, while CPU architectures will only increase by a power of three. That seems like an awfully optimistic scenario for GPUs, and a rather pessimistic one for CPUs. In fact, in six years there may not even be a strict delineation between GPUs and CPUs. I guess we’ll just have to wait for Hot Chips 2015 to see if anything we thought in 2009 was even remotely accurate.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theoretical physicist, cosmologist, author and director of resea Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Alibaba Cloud Launches ‘Bare Metal,’ HPC Instances in Europe

February 28, 2018

Alibaba, the e-commerce giant from China, is taking a run at AWS in the global public cloud computing market with new offerings aimed at the surging demand for Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Share This