Chipmakers Keep Pouring on the Cores

By Michael Feldman

August 27, 2009

The latest and greatest chippery was on exhibit earlier this week at the Hot Chips conference, an IEEE-sponsored event that encourages microprocessor vendors to talk about their next generation silicon. The emphasis is on high performance chips, so a lot of the products and technology presented at the conference eventually end up in the hands of supercomputing users. While I didn’t attend the event myself — my wife discourages me from going to any out-of-town conferences with the word “hot” in them — I did make a point of following the proceedings from afar.

The star of the show this year was the upcoming Power7 processor being developed by IBM. This is the chip that will be powering NCSA’s “Blue Water” supercomputer, a 10-petaflop machine slated for deployment in 2011. Blue Waters will be the first production deployment of IBM PERCS, a set of technologies that is being partially funded by DARPA under its High Productivity Computing Systems (HPCS) program. For more pedestrian uses, the Power7 will also be used in IBM’s Power 5xx server line. The new chips should show up in IBM gear sometime in 2010.

The 45nm Power7 will come in four-, six-, and eight-core variants, and can execute up to four threads per core. Two dual-channel DDR3 memory controllers are integrated onto the chip, delivering an impressive 100GB/sec of memory bandwidth. IBM is claiming the chip’s raw performance is on the order of two to four times that of the Power6, but will consume about the same amount of power. No one is talking specifics in regard to clock speeds yet, but the first crop of Power7 processors will almost certainly have slower clocks than the current top-of-the-line 5.0GHz Power6 parts.

Besides increased core and thread count, probably the biggest new feature of the Power7 is the use of embedded DRAM (eDRAM) for on-chip L3 cache. This is the same technology that has been incorporated into IBM’s Blue Gene PowerPC ASICs for years in both Blue Gene/L and Blue Gene/P. Since eDRAM requires just one transistor per device, as opposed to six transistors for static RAM (SRAM), eDRAM takes up only a third as much space. Plus it draws only a fifth of the power of SRAM.

The result is that more L3 cache can be placed on-chip in order to help minimize main memory accesses — an increasingly important feature as core counts rise. In the case of the Power7, the designers opted for 32 MB of L3. For comparison, Intel’s upcoming 8-core Nehalem EX chip has 24 MB of L3, while AMD’s 12-core Magny-Cours chip will use just 12 MB.

Speaking of which, AMD supplied some additional details about its upcoming Magny-Cours Opteron silicon at the Hot Chips event. Apparently the CPU will be constructed from two six-core chip modules, mirroring Intel’s initial approach to its first quad-core Xeons (that AMD was so critical of at the time). Compared to the current generation six-core Istanbul chips, Magny-Cours will have lower clock frequencies in order to keep within the same power and thermal envelope.

To help keep all 12 cores fed with data, the new design incorporates four HyperTransport links (compared to three in Istanbul) and a quad-channel DDR3 memory controller (compared to a two-channel DDR2 controller in Istanbul). AMD is planning to release the dozen-core wonder in Q1 2010. Presumably they’ll start showing up in supercomputers in the same timeframe or shortly thereafter.

Not to be out-cored, Sun Microsystems was talking up its 16-core “Rainbow Falls” processor, the company’s third-generation UltraSPARC T series (Niagara) chip. Sun says this latest version will run up to 128 total threads simultaneously. Compared to other server microprocessor designs, Rainbow Falls is a bit unconventional. For example, the Sun engineers have banished L3 cache. Instead the CPU relies on 16 banks of L2 cache plus four “coherency units” that are used to help optimize data synchronization between main memory and cache.

Since Rainbow Falls follows the Niagara lineage, presumably it will be targeted to high-throughput datacenter workloads, such as Web serving, rather than technical computing. Although the floating point unit has been pumped up, it was Sun’s ill-fated “Rock” processor that probably had the best shot at supercomputing stardom. According to many reports, the company has pulled the plug on the Rock effort, leaving it without a high-end chip for scientific applications. To be sure, there’s even a question whether Rainbow Falls will see service, given the pending Oracle acquisition of Sun and its uncertain support of Sun’s hardware business. Nevertheless, the new chip is currently slated for its debut in 2010.

So with cores multiplying like rabbits on CPUs, what do we need GPUs for? At this year’s Hot Chips event, the GPU contingent was relatively silent. No new graphics processors were presented, although NVIDIA CEO Jen-Hsun Huang did manage to rain on the CPU parade a little bit by drawing attention to the disparity between performance gains between the two major processor architectures. Huang predicted that over the next six years GPU compute power will increase by a factor of 570, while CPU architectures will only increase by a power of three. That seems like an awfully optimistic scenario for GPUs, and a rather pessimistic one for CPUs. In fact, in six years there may not even be a strict delineation between GPUs and CPUs. I guess we’ll just have to wait for Hot Chips 2015 to see if anything we thought in 2009 was even remotely accurate.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This