Reliable Memory: Coming to a GPU Near You

By Michael Feldman

September 2, 2009

GPUs are becoming more like CPUs. But in the critical area of error corrected memory, graphics hardware still lags. The lack of error correction is probably the single biggest factor that makes users of GPUs for high performance computing nervous. Some HPC applications are resistant to the occasional bad data value, but many are not. The good news is that graphics chip vendors are aware of the problem and it appears to be only a matter of time before GPUs get a memory makeover.

Before AMD and NVIDIA brought GPU computing onto the scene, graphics processors didn’t really need to be concerned with error-prone memory. If a pixel’s color is off by a bit or two, nobody is going to notice as the images go flying by. So it was natural (and cheaper) for GPU devices to be built without support for error corrected memory. In 2006, with the advent of general-purpose computing on graphics processing units, otherwise know as GPGPU, the issue of reliable memory came to the fore.

The problem is that when you’re using the GPU as a math accelerator and a memory bit flips in a data value, you’ve got a potential problem. Obviously in numerical calculations, accuracy matters. That’s why all standard CPU servers today come with memory that supports Error Correcting Codes (ECC) as well as with on-chip intelligence for error checking and correction in cache and local data structures. The reason that general-purpose computing can be done on GPUs at all has to do with the relatively infrequent occurrence of these errors on standard graphics hardware. Algorithms are typically run many times in a typical technical computing application, so anomalous results can be averaged out, or even manually discarded.

The only simple way to circumvent the problem on the current crop of GPUs is to run the code twice (or simultaneously on two separate devices). If the results don’t match, you assume an error occurred and you rerun the offending sequence. It’s relatively bulletproof, but you’ve cut your price-performance in half for the sake of error correction. A less brute-force method was devised by the Tokyo Institute of Technology, who came up with software-based ECC for GPUs (PDF). But the preliminary results showed the performance overhead was acceptable only for compute-intensive applications, not bandwidth-intensive ones.

There are different categories of memory errors. The kind most people focus on are thought to be the result of cosmic rays, alpha particles in packaging material, or possibly as a side-effect of harsh environmental conditions. They are called soft (or transient) errors and most commonly occur in off-chip DRAM, but can also strike the GPU ASIC itself in local memory or data registers.

Hard (or permanent) errors can also be present on memory chips, but these are easy to detect with simple diagnostic tests. Hard errors are usually dealt with by replacing the offending memory module, but theoretically could be handled in software too. The conventional wisdom is that soft errors are much more common than hard errors, although at least one study (PDF) by Google found just the opposite.

Data errors can also occur at the memory bus interface. Here, at least, the graphics world has made some progress. GDDR5 (Graphics Double Data Rate, version 5) memory, which first appeared in 2008, was the first memory specification for graphics platforms that contained an error detection facility. The motivation behind this was the high data rates of GDDR5, which made the odds of producing bad data much more likely. Since GDDR5 contains an error correction protocol, a compatible memory controller is able to take corrective action — basically a retry — to compensate.

That still leaves a lot of data on the GPU board exposed. Adding ECC memory to GPU boards intended for the technical computing market is a relatively straightforward product decision since the extra cost can be passed on to the GPGPU consumer. But changing the GPU core as well as the integrated memory controller to complete the protection requires a tradeoff, since extra transistors are needed for error detection and correction on the ASIC. And because of the expense of designing and testing chips, GPUs are shared across product lines at AMD and NVIDIA.

For example, the latest AMD FireStream products use the Radeon HD 4800 core, while the current NVIDIA Tesla platforms uses (presumably) the GeForce GTX 285. These are the same ASICs used in high-end graphics products. The challenge to the two GPGPU vendors is to figure out how to design processors that offer the data reliability of a CPU server, without impacting their core graphics business unduly.

Patricia Harrell, AMD’s director of Stream Computing, admits that the need for more robust data protection in GPUs already exists. She says error corrected memory is a requirement for a number of customers, especially those looking to deploy GPUs at scale, i.e., high performance computing users with large compute clusters. Although individual memory error rates are low, as you add more GPUs (and thus more graphics memory) to the system, and run applications for longer periods of time, the chances of hitting a flipped memory bit increases proportionally.

The AMD FireStream 9270 board already incorporates GDDR5 memory, so data protection is already in place at the memory interface in this product. In this case, whenever the memory controller sends and receives data to and from the DRAM, it buffers the data locally while the DRAM calculates the integrity of the value and returns a status code. If the code indicates an error, the memory controller does the retry automatically.

Overall though, AMD seems to be taking a cautious approach to error correcting GPUs. “It’s really important to put in the required features intelligently, and make sure you do the research and engineering to protect the data structures that are going to return the most value,” notes Harrell. If not, she says, you end up with devices that are too big and too hot, in which case you lose the performance advantages GPGPU was originally intended for.

Harrell says that they are continuing to look at the memory protection issue, but couldn’t offer more specific guidance on AMD’s roadmap. “I think it isn’t clear if that [error correction] is going to be required for the broad market yet,” she adds.

Unlike AMD’s more wait-and-see attitude, NVIDIA appears to be fully committed to bringing error protection to GPU computing. According to Andy Keane, general manager of the GPU computing business unit at NVIDIA, it is not a matter of if, but when. From his point of view, ECC memory is a hard requirement in datacenters. “We have to respond to that by building that kind of support into our roadmap,” Keane said unequivocally. “It will be in a future GPU.”

As far as when ECC-capable Tesla products will show up, Keane wouldn’t say. It’s likely that NVIDIA’s OEM partners and GPU computing developers already have a pretty good idea of the timeline (under NDA of course), so systems and software based on high-integrity GPUs may already be in the works. In a Real World Technologies article that spells out the major costs and benefits of error corrected memory in GPUs, analyst David Kanter predicts that NVIDIA’s next GPGPU product release will include ECC.

Presumably Intel is also mulling over its options, since Larrabee, the company’s first high-end graphics processor, is scheduled to be released into the wild next year. But Intel insists the first version of Larrabee will target the traditional graphics space, making it unlikely that they would introduce ECC into the mix. Of course, the company could reverse itself and release a true HPC processor variant with ECC bells and whistles.

My sense is that ECC will come to GPU computing products sooner (1-2 years) rather that later (3-5 years). Being able to ensure data integrity in these devices will widen the aperture for HPC applications and help push GPGPU into true supercomputers. Just like double precision performance and on-board memory capacity, error correction is destined to become an important differentiator in high-end GPU computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This