Reliable Memory: Coming to a GPU Near You

By Michael Feldman

September 2, 2009

GPUs are becoming more like CPUs. But in the critical area of error corrected memory, graphics hardware still lags. The lack of error correction is probably the single biggest factor that makes users of GPUs for high performance computing nervous. Some HPC applications are resistant to the occasional bad data value, but many are not. The good news is that graphics chip vendors are aware of the problem and it appears to be only a matter of time before GPUs get a memory makeover.

Before AMD and NVIDIA brought GPU computing onto the scene, graphics processors didn’t really need to be concerned with error-prone memory. If a pixel’s color is off by a bit or two, nobody is going to notice as the images go flying by. So it was natural (and cheaper) for GPU devices to be built without support for error corrected memory. In 2006, with the advent of general-purpose computing on graphics processing units, otherwise know as GPGPU, the issue of reliable memory came to the fore.

The problem is that when you’re using the GPU as a math accelerator and a memory bit flips in a data value, you’ve got a potential problem. Obviously in numerical calculations, accuracy matters. That’s why all standard CPU servers today come with memory that supports Error Correcting Codes (ECC) as well as with on-chip intelligence for error checking and correction in cache and local data structures. The reason that general-purpose computing can be done on GPUs at all has to do with the relatively infrequent occurrence of these errors on standard graphics hardware. Algorithms are typically run many times in a typical technical computing application, so anomalous results can be averaged out, or even manually discarded.

The only simple way to circumvent the problem on the current crop of GPUs is to run the code twice (or simultaneously on two separate devices). If the results don’t match, you assume an error occurred and you rerun the offending sequence. It’s relatively bulletproof, but you’ve cut your price-performance in half for the sake of error correction. A less brute-force method was devised by the Tokyo Institute of Technology, who came up with software-based ECC for GPUs (PDF). But the preliminary results showed the performance overhead was acceptable only for compute-intensive applications, not bandwidth-intensive ones.

There are different categories of memory errors. The kind most people focus on are thought to be the result of cosmic rays, alpha particles in packaging material, or possibly as a side-effect of harsh environmental conditions. They are called soft (or transient) errors and most commonly occur in off-chip DRAM, but can also strike the GPU ASIC itself in local memory or data registers.

Hard (or permanent) errors can also be present on memory chips, but these are easy to detect with simple diagnostic tests. Hard errors are usually dealt with by replacing the offending memory module, but theoretically could be handled in software too. The conventional wisdom is that soft errors are much more common than hard errors, although at least one study (PDF) by Google found just the opposite.

Data errors can also occur at the memory bus interface. Here, at least, the graphics world has made some progress. GDDR5 (Graphics Double Data Rate, version 5) memory, which first appeared in 2008, was the first memory specification for graphics platforms that contained an error detection facility. The motivation behind this was the high data rates of GDDR5, which made the odds of producing bad data much more likely. Since GDDR5 contains an error correction protocol, a compatible memory controller is able to take corrective action — basically a retry — to compensate.

That still leaves a lot of data on the GPU board exposed. Adding ECC memory to GPU boards intended for the technical computing market is a relatively straightforward product decision since the extra cost can be passed on to the GPGPU consumer. But changing the GPU core as well as the integrated memory controller to complete the protection requires a tradeoff, since extra transistors are needed for error detection and correction on the ASIC. And because of the expense of designing and testing chips, GPUs are shared across product lines at AMD and NVIDIA.

For example, the latest AMD FireStream products use the Radeon HD 4800 core, while the current NVIDIA Tesla platforms uses (presumably) the GeForce GTX 285. These are the same ASICs used in high-end graphics products. The challenge to the two GPGPU vendors is to figure out how to design processors that offer the data reliability of a CPU server, without impacting their core graphics business unduly.

Patricia Harrell, AMD’s director of Stream Computing, admits that the need for more robust data protection in GPUs already exists. She says error corrected memory is a requirement for a number of customers, especially those looking to deploy GPUs at scale, i.e., high performance computing users with large compute clusters. Although individual memory error rates are low, as you add more GPUs (and thus more graphics memory) to the system, and run applications for longer periods of time, the chances of hitting a flipped memory bit increases proportionally.

The AMD FireStream 9270 board already incorporates GDDR5 memory, so data protection is already in place at the memory interface in this product. In this case, whenever the memory controller sends and receives data to and from the DRAM, it buffers the data locally while the DRAM calculates the integrity of the value and returns a status code. If the code indicates an error, the memory controller does the retry automatically.

Overall though, AMD seems to be taking a cautious approach to error correcting GPUs. “It’s really important to put in the required features intelligently, and make sure you do the research and engineering to protect the data structures that are going to return the most value,” notes Harrell. If not, she says, you end up with devices that are too big and too hot, in which case you lose the performance advantages GPGPU was originally intended for.

Harrell says that they are continuing to look at the memory protection issue, but couldn’t offer more specific guidance on AMD’s roadmap. “I think it isn’t clear if that [error correction] is going to be required for the broad market yet,” she adds.

Unlike AMD’s more wait-and-see attitude, NVIDIA appears to be fully committed to bringing error protection to GPU computing. According to Andy Keane, general manager of the GPU computing business unit at NVIDIA, it is not a matter of if, but when. From his point of view, ECC memory is a hard requirement in datacenters. “We have to respond to that by building that kind of support into our roadmap,” Keane said unequivocally. “It will be in a future GPU.”

As far as when ECC-capable Tesla products will show up, Keane wouldn’t say. It’s likely that NVIDIA’s OEM partners and GPU computing developers already have a pretty good idea of the timeline (under NDA of course), so systems and software based on high-integrity GPUs may already be in the works. In a Real World Technologies article that spells out the major costs and benefits of error corrected memory in GPUs, analyst David Kanter predicts that NVIDIA’s next GPGPU product release will include ECC.

Presumably Intel is also mulling over its options, since Larrabee, the company’s first high-end graphics processor, is scheduled to be released into the wild next year. But Intel insists the first version of Larrabee will target the traditional graphics space, making it unlikely that they would introduce ECC into the mix. Of course, the company could reverse itself and release a true HPC processor variant with ECC bells and whistles.

My sense is that ECC will come to GPU computing products sooner (1-2 years) rather that later (3-5 years). Being able to ensure data integrity in these devices will widen the aperture for HPC applications and help push GPGPU into true supercomputers. Just like double precision performance and on-board memory capacity, error correction is destined to become an important differentiator in high-end GPU computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This