Reliable Memory: Coming to a GPU Near You

By Michael Feldman

September 2, 2009

GPUs are becoming more like CPUs. But in the critical area of error corrected memory, graphics hardware still lags. The lack of error correction is probably the single biggest factor that makes users of GPUs for high performance computing nervous. Some HPC applications are resistant to the occasional bad data value, but many are not. The good news is that graphics chip vendors are aware of the problem and it appears to be only a matter of time before GPUs get a memory makeover.

Before AMD and NVIDIA brought GPU computing onto the scene, graphics processors didn’t really need to be concerned with error-prone memory. If a pixel’s color is off by a bit or two, nobody is going to notice as the images go flying by. So it was natural (and cheaper) for GPU devices to be built without support for error corrected memory. In 2006, with the advent of general-purpose computing on graphics processing units, otherwise know as GPGPU, the issue of reliable memory came to the fore.

The problem is that when you’re using the GPU as a math accelerator and a memory bit flips in a data value, you’ve got a potential problem. Obviously in numerical calculations, accuracy matters. That’s why all standard CPU servers today come with memory that supports Error Correcting Codes (ECC) as well as with on-chip intelligence for error checking and correction in cache and local data structures. The reason that general-purpose computing can be done on GPUs at all has to do with the relatively infrequent occurrence of these errors on standard graphics hardware. Algorithms are typically run many times in a typical technical computing application, so anomalous results can be averaged out, or even manually discarded.

The only simple way to circumvent the problem on the current crop of GPUs is to run the code twice (or simultaneously on two separate devices). If the results don’t match, you assume an error occurred and you rerun the offending sequence. It’s relatively bulletproof, but you’ve cut your price-performance in half for the sake of error correction. A less brute-force method was devised by the Tokyo Institute of Technology, who came up with software-based ECC for GPUs (PDF). But the preliminary results showed the performance overhead was acceptable only for compute-intensive applications, not bandwidth-intensive ones.

There are different categories of memory errors. The kind most people focus on are thought to be the result of cosmic rays, alpha particles in packaging material, or possibly as a side-effect of harsh environmental conditions. They are called soft (or transient) errors and most commonly occur in off-chip DRAM, but can also strike the GPU ASIC itself in local memory or data registers.

Hard (or permanent) errors can also be present on memory chips, but these are easy to detect with simple diagnostic tests. Hard errors are usually dealt with by replacing the offending memory module, but theoretically could be handled in software too. The conventional wisdom is that soft errors are much more common than hard errors, although at least one study (PDF) by Google found just the opposite.

Data errors can also occur at the memory bus interface. Here, at least, the graphics world has made some progress. GDDR5 (Graphics Double Data Rate, version 5) memory, which first appeared in 2008, was the first memory specification for graphics platforms that contained an error detection facility. The motivation behind this was the high data rates of GDDR5, which made the odds of producing bad data much more likely. Since GDDR5 contains an error correction protocol, a compatible memory controller is able to take corrective action — basically a retry — to compensate.

That still leaves a lot of data on the GPU board exposed. Adding ECC memory to GPU boards intended for the technical computing market is a relatively straightforward product decision since the extra cost can be passed on to the GPGPU consumer. But changing the GPU core as well as the integrated memory controller to complete the protection requires a tradeoff, since extra transistors are needed for error detection and correction on the ASIC. And because of the expense of designing and testing chips, GPUs are shared across product lines at AMD and NVIDIA.

For example, the latest AMD FireStream products use the Radeon HD 4800 core, while the current NVIDIA Tesla platforms uses (presumably) the GeForce GTX 285. These are the same ASICs used in high-end graphics products. The challenge to the two GPGPU vendors is to figure out how to design processors that offer the data reliability of a CPU server, without impacting their core graphics business unduly.

Patricia Harrell, AMD’s director of Stream Computing, admits that the need for more robust data protection in GPUs already exists. She says error corrected memory is a requirement for a number of customers, especially those looking to deploy GPUs at scale, i.e., high performance computing users with large compute clusters. Although individual memory error rates are low, as you add more GPUs (and thus more graphics memory) to the system, and run applications for longer periods of time, the chances of hitting a flipped memory bit increases proportionally.

The AMD FireStream 9270 board already incorporates GDDR5 memory, so data protection is already in place at the memory interface in this product. In this case, whenever the memory controller sends and receives data to and from the DRAM, it buffers the data locally while the DRAM calculates the integrity of the value and returns a status code. If the code indicates an error, the memory controller does the retry automatically.

Overall though, AMD seems to be taking a cautious approach to error correcting GPUs. “It’s really important to put in the required features intelligently, and make sure you do the research and engineering to protect the data structures that are going to return the most value,” notes Harrell. If not, she says, you end up with devices that are too big and too hot, in which case you lose the performance advantages GPGPU was originally intended for.

Harrell says that they are continuing to look at the memory protection issue, but couldn’t offer more specific guidance on AMD’s roadmap. “I think it isn’t clear if that [error correction] is going to be required for the broad market yet,” she adds.

Unlike AMD’s more wait-and-see attitude, NVIDIA appears to be fully committed to bringing error protection to GPU computing. According to Andy Keane, general manager of the GPU computing business unit at NVIDIA, it is not a matter of if, but when. From his point of view, ECC memory is a hard requirement in datacenters. “We have to respond to that by building that kind of support into our roadmap,” Keane said unequivocally. “It will be in a future GPU.”

As far as when ECC-capable Tesla products will show up, Keane wouldn’t say. It’s likely that NVIDIA’s OEM partners and GPU computing developers already have a pretty good idea of the timeline (under NDA of course), so systems and software based on high-integrity GPUs may already be in the works. In a Real World Technologies article that spells out the major costs and benefits of error corrected memory in GPUs, analyst David Kanter predicts that NVIDIA’s next GPGPU product release will include ECC.

Presumably Intel is also mulling over its options, since Larrabee, the company’s first high-end graphics processor, is scheduled to be released into the wild next year. But Intel insists the first version of Larrabee will target the traditional graphics space, making it unlikely that they would introduce ECC into the mix. Of course, the company could reverse itself and release a true HPC processor variant with ECC bells and whistles.

My sense is that ECC will come to GPU computing products sooner (1-2 years) rather that later (3-5 years). Being able to ensure data integrity in these devices will widen the aperture for HPC applications and help push GPGPU into true supercomputers. Just like double precision performance and on-board memory capacity, error correction is destined to become an important differentiator in high-end GPU computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This