Reliable Memory: Coming to a GPU Near You

By Michael Feldman

September 2, 2009

GPUs are becoming more like CPUs. But in the critical area of error corrected memory, graphics hardware still lags. The lack of error correction is probably the single biggest factor that makes users of GPUs for high performance computing nervous. Some HPC applications are resistant to the occasional bad data value, but many are not. The good news is that graphics chip vendors are aware of the problem and it appears to be only a matter of time before GPUs get a memory makeover.

Before AMD and NVIDIA brought GPU computing onto the scene, graphics processors didn’t really need to be concerned with error-prone memory. If a pixel’s color is off by a bit or two, nobody is going to notice as the images go flying by. So it was natural (and cheaper) for GPU devices to be built without support for error corrected memory. In 2006, with the advent of general-purpose computing on graphics processing units, otherwise know as GPGPU, the issue of reliable memory came to the fore.

The problem is that when you’re using the GPU as a math accelerator and a memory bit flips in a data value, you’ve got a potential problem. Obviously in numerical calculations, accuracy matters. That’s why all standard CPU servers today come with memory that supports Error Correcting Codes (ECC) as well as with on-chip intelligence for error checking and correction in cache and local data structures. The reason that general-purpose computing can be done on GPUs at all has to do with the relatively infrequent occurrence of these errors on standard graphics hardware. Algorithms are typically run many times in a typical technical computing application, so anomalous results can be averaged out, or even manually discarded.

The only simple way to circumvent the problem on the current crop of GPUs is to run the code twice (or simultaneously on two separate devices). If the results don’t match, you assume an error occurred and you rerun the offending sequence. It’s relatively bulletproof, but you’ve cut your price-performance in half for the sake of error correction. A less brute-force method was devised by the Tokyo Institute of Technology, who came up with software-based ECC for GPUs (PDF). But the preliminary results showed the performance overhead was acceptable only for compute-intensive applications, not bandwidth-intensive ones.

There are different categories of memory errors. The kind most people focus on are thought to be the result of cosmic rays, alpha particles in packaging material, or possibly as a side-effect of harsh environmental conditions. They are called soft (or transient) errors and most commonly occur in off-chip DRAM, but can also strike the GPU ASIC itself in local memory or data registers.

Hard (or permanent) errors can also be present on memory chips, but these are easy to detect with simple diagnostic tests. Hard errors are usually dealt with by replacing the offending memory module, but theoretically could be handled in software too. The conventional wisdom is that soft errors are much more common than hard errors, although at least one study (PDF) by Google found just the opposite.

Data errors can also occur at the memory bus interface. Here, at least, the graphics world has made some progress. GDDR5 (Graphics Double Data Rate, version 5) memory, which first appeared in 2008, was the first memory specification for graphics platforms that contained an error detection facility. The motivation behind this was the high data rates of GDDR5, which made the odds of producing bad data much more likely. Since GDDR5 contains an error correction protocol, a compatible memory controller is able to take corrective action — basically a retry — to compensate.

That still leaves a lot of data on the GPU board exposed. Adding ECC memory to GPU boards intended for the technical computing market is a relatively straightforward product decision since the extra cost can be passed on to the GPGPU consumer. But changing the GPU core as well as the integrated memory controller to complete the protection requires a tradeoff, since extra transistors are needed for error detection and correction on the ASIC. And because of the expense of designing and testing chips, GPUs are shared across product lines at AMD and NVIDIA.

For example, the latest AMD FireStream products use the Radeon HD 4800 core, while the current NVIDIA Tesla platforms uses (presumably) the GeForce GTX 285. These are the same ASICs used in high-end graphics products. The challenge to the two GPGPU vendors is to figure out how to design processors that offer the data reliability of a CPU server, without impacting their core graphics business unduly.

Patricia Harrell, AMD’s director of Stream Computing, admits that the need for more robust data protection in GPUs already exists. She says error corrected memory is a requirement for a number of customers, especially those looking to deploy GPUs at scale, i.e., high performance computing users with large compute clusters. Although individual memory error rates are low, as you add more GPUs (and thus more graphics memory) to the system, and run applications for longer periods of time, the chances of hitting a flipped memory bit increases proportionally.

The AMD FireStream 9270 board already incorporates GDDR5 memory, so data protection is already in place at the memory interface in this product. In this case, whenever the memory controller sends and receives data to and from the DRAM, it buffers the data locally while the DRAM calculates the integrity of the value and returns a status code. If the code indicates an error, the memory controller does the retry automatically.

Overall though, AMD seems to be taking a cautious approach to error correcting GPUs. “It’s really important to put in the required features intelligently, and make sure you do the research and engineering to protect the data structures that are going to return the most value,” notes Harrell. If not, she says, you end up with devices that are too big and too hot, in which case you lose the performance advantages GPGPU was originally intended for.

Harrell says that they are continuing to look at the memory protection issue, but couldn’t offer more specific guidance on AMD’s roadmap. “I think it isn’t clear if that [error correction] is going to be required for the broad market yet,” she adds.

Unlike AMD’s more wait-and-see attitude, NVIDIA appears to be fully committed to bringing error protection to GPU computing. According to Andy Keane, general manager of the GPU computing business unit at NVIDIA, it is not a matter of if, but when. From his point of view, ECC memory is a hard requirement in datacenters. “We have to respond to that by building that kind of support into our roadmap,” Keane said unequivocally. “It will be in a future GPU.”

As far as when ECC-capable Tesla products will show up, Keane wouldn’t say. It’s likely that NVIDIA’s OEM partners and GPU computing developers already have a pretty good idea of the timeline (under NDA of course), so systems and software based on high-integrity GPUs may already be in the works. In a Real World Technologies article that spells out the major costs and benefits of error corrected memory in GPUs, analyst David Kanter predicts that NVIDIA’s next GPGPU product release will include ECC.

Presumably Intel is also mulling over its options, since Larrabee, the company’s first high-end graphics processor, is scheduled to be released into the wild next year. But Intel insists the first version of Larrabee will target the traditional graphics space, making it unlikely that they would introduce ECC into the mix. Of course, the company could reverse itself and release a true HPC processor variant with ECC bells and whistles.

My sense is that ECC will come to GPU computing products sooner (1-2 years) rather that later (3-5 years). Being able to ensure data integrity in these devices will widen the aperture for HPC applications and help push GPGPU into true supercomputers. Just like double precision performance and on-board memory capacity, error correction is destined to become an important differentiator in high-end GPU computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

Imagine if all the atoms in the universe could be added up into a single number. Big number, right? Maybe the biggest number conceivable. But wait, there’s a bigger number out there. We're told that Go, the world’s Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

Imagine if all the atoms in the universe could be added up into a single number. Big number, right? Maybe the biggest number conceivable. But wait, there’s a Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This