Reliable Memory: Coming to a GPU Near You

By Michael Feldman

September 2, 2009

GPUs are becoming more like CPUs. But in the critical area of error corrected memory, graphics hardware still lags. The lack of error correction is probably the single biggest factor that makes users of GPUs for high performance computing nervous. Some HPC applications are resistant to the occasional bad data value, but many are not. The good news is that graphics chip vendors are aware of the problem and it appears to be only a matter of time before GPUs get a memory makeover.

Before AMD and NVIDIA brought GPU computing onto the scene, graphics processors didn’t really need to be concerned with error-prone memory. If a pixel’s color is off by a bit or two, nobody is going to notice as the images go flying by. So it was natural (and cheaper) for GPU devices to be built without support for error corrected memory. In 2006, with the advent of general-purpose computing on graphics processing units, otherwise know as GPGPU, the issue of reliable memory came to the fore.

The problem is that when you’re using the GPU as a math accelerator and a memory bit flips in a data value, you’ve got a potential problem. Obviously in numerical calculations, accuracy matters. That’s why all standard CPU servers today come with memory that supports Error Correcting Codes (ECC) as well as with on-chip intelligence for error checking and correction in cache and local data structures. The reason that general-purpose computing can be done on GPUs at all has to do with the relatively infrequent occurrence of these errors on standard graphics hardware. Algorithms are typically run many times in a typical technical computing application, so anomalous results can be averaged out, or even manually discarded.

The only simple way to circumvent the problem on the current crop of GPUs is to run the code twice (or simultaneously on two separate devices). If the results don’t match, you assume an error occurred and you rerun the offending sequence. It’s relatively bulletproof, but you’ve cut your price-performance in half for the sake of error correction. A less brute-force method was devised by the Tokyo Institute of Technology, who came up with software-based ECC for GPUs (PDF). But the preliminary results showed the performance overhead was acceptable only for compute-intensive applications, not bandwidth-intensive ones.

There are different categories of memory errors. The kind most people focus on are thought to be the result of cosmic rays, alpha particles in packaging material, or possibly as a side-effect of harsh environmental conditions. They are called soft (or transient) errors and most commonly occur in off-chip DRAM, but can also strike the GPU ASIC itself in local memory or data registers.

Hard (or permanent) errors can also be present on memory chips, but these are easy to detect with simple diagnostic tests. Hard errors are usually dealt with by replacing the offending memory module, but theoretically could be handled in software too. The conventional wisdom is that soft errors are much more common than hard errors, although at least one study (PDF) by Google found just the opposite.

Data errors can also occur at the memory bus interface. Here, at least, the graphics world has made some progress. GDDR5 (Graphics Double Data Rate, version 5) memory, which first appeared in 2008, was the first memory specification for graphics platforms that contained an error detection facility. The motivation behind this was the high data rates of GDDR5, which made the odds of producing bad data much more likely. Since GDDR5 contains an error correction protocol, a compatible memory controller is able to take corrective action — basically a retry — to compensate.

That still leaves a lot of data on the GPU board exposed. Adding ECC memory to GPU boards intended for the technical computing market is a relatively straightforward product decision since the extra cost can be passed on to the GPGPU consumer. But changing the GPU core as well as the integrated memory controller to complete the protection requires a tradeoff, since extra transistors are needed for error detection and correction on the ASIC. And because of the expense of designing and testing chips, GPUs are shared across product lines at AMD and NVIDIA.

For example, the latest AMD FireStream products use the Radeon HD 4800 core, while the current NVIDIA Tesla platforms uses (presumably) the GeForce GTX 285. These are the same ASICs used in high-end graphics products. The challenge to the two GPGPU vendors is to figure out how to design processors that offer the data reliability of a CPU server, without impacting their core graphics business unduly.

Patricia Harrell, AMD’s director of Stream Computing, admits that the need for more robust data protection in GPUs already exists. She says error corrected memory is a requirement for a number of customers, especially those looking to deploy GPUs at scale, i.e., high performance computing users with large compute clusters. Although individual memory error rates are low, as you add more GPUs (and thus more graphics memory) to the system, and run applications for longer periods of time, the chances of hitting a flipped memory bit increases proportionally.

The AMD FireStream 9270 board already incorporates GDDR5 memory, so data protection is already in place at the memory interface in this product. In this case, whenever the memory controller sends and receives data to and from the DRAM, it buffers the data locally while the DRAM calculates the integrity of the value and returns a status code. If the code indicates an error, the memory controller does the retry automatically.

Overall though, AMD seems to be taking a cautious approach to error correcting GPUs. “It’s really important to put in the required features intelligently, and make sure you do the research and engineering to protect the data structures that are going to return the most value,” notes Harrell. If not, she says, you end up with devices that are too big and too hot, in which case you lose the performance advantages GPGPU was originally intended for.

Harrell says that they are continuing to look at the memory protection issue, but couldn’t offer more specific guidance on AMD’s roadmap. “I think it isn’t clear if that [error correction] is going to be required for the broad market yet,” she adds.

Unlike AMD’s more wait-and-see attitude, NVIDIA appears to be fully committed to bringing error protection to GPU computing. According to Andy Keane, general manager of the GPU computing business unit at NVIDIA, it is not a matter of if, but when. From his point of view, ECC memory is a hard requirement in datacenters. “We have to respond to that by building that kind of support into our roadmap,” Keane said unequivocally. “It will be in a future GPU.”

As far as when ECC-capable Tesla products will show up, Keane wouldn’t say. It’s likely that NVIDIA’s OEM partners and GPU computing developers already have a pretty good idea of the timeline (under NDA of course), so systems and software based on high-integrity GPUs may already be in the works. In a Real World Technologies article that spells out the major costs and benefits of error corrected memory in GPUs, analyst David Kanter predicts that NVIDIA’s next GPGPU product release will include ECC.

Presumably Intel is also mulling over its options, since Larrabee, the company’s first high-end graphics processor, is scheduled to be released into the wild next year. But Intel insists the first version of Larrabee will target the traditional graphics space, making it unlikely that they would introduce ECC into the mix. Of course, the company could reverse itself and release a true HPC processor variant with ECC bells and whistles.

My sense is that ECC will come to GPU computing products sooner (1-2 years) rather that later (3-5 years). Being able to ensure data integrity in these devices will widen the aperture for HPC applications and help push GPGPU into true supercomputers. Just like double precision performance and on-board memory capacity, error correction is destined to become an important differentiator in high-end GPU computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This