Compilers and More: OpenCL Promises and Potential

By Michael Wolfe

September 10, 2009

OpenCL was introduced with great fanfare and promise. Apple has served a key role, perhaps the key role, in pushing OpenCL to ratification and public release. In fact, Apple has apparently filed for trademark protection on OpenCL technology, presumably (or hopefully) to prevent anyone else from claiming prior art and thereby preventing Apple from using it themselves. The development of OpenCL included dozens of industrial and institutional partners, including AMD, ARM, IBM, Intel, NVIDIA, and Texas Instruments.

The excitement is intensified by a quote from Steve Jobs saying, “It’s way beyond what NVIDIA or anyone else has, and it’s really simple,” (more on this later), and the first line on the Khronos OpenCL page: “OpenCL is the first open, royalty-free standard for cross-platform, parallel programming of modern processors found in personal computers, servers and handheld/embedded devices.” That last comment leaves me rankled, since I’m personally deeply involved in OpenMP, another open, royalty-free standard for parallel programming of modern processors; perhaps there are enough adjectival phrases in the OpenCL statement to distinguish it. At the SC08 OpenCL Technical Briefing, Tim Mattson from Intel, who is also deeply involved in OpenMP language development, gushed about how we now finally have a portable parallel programming model, and predicted that half the people in the room would be using OpenCL by the next SC conference. I guess we’ll see in just a couple of months.

So, given all the hype, what can we expect from OpenCL? Is it really simple? Is it portable? Will it replace other parallel programming models? It’s still a little early; we’ve seen a multicore demonstration of OpenCL from AMD, a limited developer release from NVIDIA, and Apple is planning to release its next generation operating system in September, including OpenCL support. Yet we can prognosticate, given what we know about the language and related technologies.

Is it simple?

Simple is a loaded term. One can claim anything is simple if it’s simpler than something else that’s even more complex. But I’ve said before that parallel programming is hard, and is going to remain so. Perhaps that’s overstating the case: we can probably make it easy to write parallel programs that perform badly, but I’m assuming that isn’t the intent and is obviously unacceptable.

So, is there a metric by which we can claim that OpenCL is simple? I’m going to give a qualified no. In OpenCL, you have a host and one or more compute devices; you have a host program that launches kernels; you have task parallelism and data parallelism, work-items and work-groups; you have contexts and command queues; you have global memory, local memory, and private memory, not to mention constant memory, with different consistency models across the memory types; you have buffer objects, image objects, and sampler objects; and you have language restrictions and language extensions. It’s not simple.

Over fifty years of programming language development has led us to expect certain features in our programming environment, such as simple access to modular programming (procedures, argument passing, linkers), which are not so well represented in OpenCL. There’s no linker for GPU kernels in OpenCL; you must include library calls to build a device program and extract a handle to the kernel function. There’s no direct function call to the kernel; you must set up the arguments one at a time with a series of library calls. The OpenCL strategy was to not perturb the host programming language with additional keywords or syntax, but to encapsulate additional functionality in a host-side library. You can expect any number of OpenCL preprocessors to convert a higher-level representation (a la NVIDIA’s CUDA) to the lower-level OpenCL. If I haven’t convinced you that OpenCL isn’t simple, look at an OpenCL example program, in this case to compute the sum of a vector of numbers (provided by Apple).

So, what’s my qualification? If you had looked at the hoops programmers had to jump through to program GPUs for general purpose computing before OpenCL and CUDA, you’d agree that these languages are a very large step in the right direction. Much simpler, though not really simple.

Is it portable?

Again, we should define our metric. We’ve grown accustomed to being able to write programs that will run across a wide variety of target systems with almost no modifications. Compiled languages (Fortran, C, C++) will require a recompile for a new processor or operating system, and may need changes for system calls. Just-in-time platforms (for Java, C#) and interpreted languages (Perl, Python) don’t even need that.

However, in the HPC world we want more than the program to just work; we want it to deliver high performance. The gold standard in this regard has been vectorizing compilers. When the Cray-1 was delivered in 1976, the primary method to access the vector instructions was to use the vectorizing Fortran compiler, CFT (Cray Fortran Translator). The compiler generated a vectorization listing telling the user what loops were or were not vectorized; if there were vector hazards (data dependences) or other limitations (IO statements, procedure calls, conditionals), the listing would call them out. Programmers learned to read the listing and, if the loop were critical to performance, rewrite the loop so it would vectorize. They were rewarded with vector performance on that application, and they learned how to write code that would vectorize for their next project. Moreover, and this is the key, those programs would also vectorize on subsequent generations of vector machines from Fujitsu, NEC, IBM, Convex, Alliant, Hitachi, and others. Those vector programs were not just portable, they were performance portable.

Side note: We use exactly the same compiler technology for today’s packed instruction set extensions, like SSE on X64 and Altivec on IBM Power. And enjoy the same performance portability benefits as well.

So, are OpenCL programs going to be performance portable or not? Sadly, not. An OpenCL kernel is a low-level representation of the work to be done on the accelerator or GPU itself. To optimize the performance, you must know and take advantage of device-specific information such as the optimal number of work-items in a work-group, the amount of local memory and perhaps the number of banks, and trade-offs between parallelism and efficiency. An optimized kernel for one device may or may not perform well on another, but is unlikely to be optimal for that second device. This is not a condemnation of OpenCL, or even a failure of the language. It was intended and designed to be a low-level, high-performance, close-to-the-metal, efficient programming interface, borrowing phrases. The intent is apparently that OpenCL will support an ecosystem of tools, middleware and applications, not to be the portable parallel abstraction. Even though the kernels are not performance portable, even if you have to tune your kernels for each device, the ability to write your kernels for different devices in the same language is a great leap forward from where we are today.

Will it replace or supersede other parallel programming models?

What other models might it replace? The dominant parallel programming models are MPI for cluster programming and OpenMP for shared memory programming. Many others exist: Java threads, TBB, Map/Reduce, Unified Parallel C, Cilk, and many more, but let’s stick with the classics.

MPI programming targets a network of homogeneous or heterogeneous nodes running in MIMD mode, each communicating and synchronizing with other nodes, one-to-one or collectively. The node program is a complete scalar program; from the language perspective, it just happens to use a library that happens to communicate through I/O channels with other copies of itself that just happen to be running at the same time. OpenMP programming targets a homogeneous shared-memory multiprocessor running in MIMD mode, with a master thread that controls when the other threads running on other processors start to cooperate to help with parallel work. Unlike an MPI node program, the OpenMP program is a global program; it describes all the work to be done, with directives telling the compiler which parts to run on the master thread, which parts to run redundantly on all threads, and (most importantly) which parts to split up among the worker threads.

OpenCL kernel routines are like MPI node programs; they describe the work to be done by one thread. The OpenCL host program is like the OpenMP master thread; it controls the execution of the kernels and the parallel threads. OpenCL uses shared memory in the compute devices, like OpenMP, but has a weaker consistency model and weaker synchronization semantics. The requirement to break up the parallel part of the program into kernels, with a single host thread acting as master, and the shared memory among the compute devices, makes OpenCL an unlikely candidate to replace MPI on large network supercomputers. The separate host and compute device memory, very limited synchronization, and non-incremental nature make it unlikely to replace OpenMP as the preferred method to program multicore or other shared memory multiprocessors.

Will OpenCL replace CUDA?

This is a more interesting question. The OpenCL JumpStart Guide from NVIDIA points out that CUDA has two library API layers. There is a Runtime API, which includes some language syntax extensions, and which automates some of the handshaking between the host thread and the compute device. There is also a lower level, Driver API, which requires the programmer to manage all the interaction between the host and the device. OpenCL is quite similar in many respects to CUDA using the Driver API, and the above mentioned JumpStart Guide gives the correspondence between the two.

Will NVIDIA adopt OpenCL in place of CUDA? That would be silly; NVIDIA already has a large contingent of CUDA users, and CUDA C does include the higher level, easier-to-use Runtime API. NVIDIA has had a two-year head start in the GPU/Accelerator programming game. While OpenCL has the potential to level the playing field somewhat, the CUDA Runtime API gives NVIDIA a slight edge in programmability, so NVIDIA will not likely abandon it.

Does OpenCL have any value at all?

We certainly hope so, given how much effort has gone into its definition and various implementations from AMD, Apple, NVIDIA, and certainly others. Today, if you have the right kind of parallelism in your application, and you’re willing to expend the effort to recast your program in CUDA kernels and write the host program interface, you can see some dramatic performance improvements. Replacing CUDA with OpenCL may allow you to port your program from an NVIDIA device to an ATI GPU or Intel Larrabee with only an incremental effort. So, yes, there is definite value here. The question remaining to be answered is how much value, and how long will it continue to be valuable. I can’t answer that, and I don’t want to raise the FUD (fear, uncertainty, doubt) factor. If Intel’s Larrabee and other similar devices, which support a richer programming model, replace GPUs as the dominant compute accelerator, OpenCL may join the dead language heap, along with Thinking Machine’s C*, MasPar’s MPL, and ClearSpeed’s Cn. However, if GPUs and other accelerators can continue to use the OpenCL programming model efficiently, and deliver high performance at relatively low cost, then OpenCL can enjoy a long, useful life. My opinion: it’s likely to be more useful as a target language for higher level programming languages, tools, and environments, or as a language to implement optimized libraries, than as a language for a more general programming community.

So let’s accept and even celebrate OpenCL for what it is, and not try to make it what it can’t be. There’s danger is raising expectations too high, or claiming too much (a la Bernie Madoff); OpenCL can be influential and succeed without replacing other parallel languages. To correct Steve Job’s quote: “While OpenCL is very similar in many respects to NVIDIA’s CUDA, it adds features to take advantage of other targets; and though it’s quite complex, it has the potential to deliver very high performance, and is much easier than trying to map your computation into OpenGL or graphics primitives.” Hype I can agree with; but then, I’m not the Apple CEO.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This