Compilers and More: OpenCL Promises and Potential

By Michael Wolfe

September 10, 2009

OpenCL was introduced with great fanfare and promise. Apple has served a key role, perhaps the key role, in pushing OpenCL to ratification and public release. In fact, Apple has apparently filed for trademark protection on OpenCL technology, presumably (or hopefully) to prevent anyone else from claiming prior art and thereby preventing Apple from using it themselves. The development of OpenCL included dozens of industrial and institutional partners, including AMD, ARM, IBM, Intel, NVIDIA, and Texas Instruments.

The excitement is intensified by a quote from Steve Jobs saying, “It’s way beyond what NVIDIA or anyone else has, and it’s really simple,” (more on this later), and the first line on the Khronos OpenCL page: “OpenCL is the first open, royalty-free standard for cross-platform, parallel programming of modern processors found in personal computers, servers and handheld/embedded devices.” That last comment leaves me rankled, since I’m personally deeply involved in OpenMP, another open, royalty-free standard for parallel programming of modern processors; perhaps there are enough adjectival phrases in the OpenCL statement to distinguish it. At the SC08 OpenCL Technical Briefing, Tim Mattson from Intel, who is also deeply involved in OpenMP language development, gushed about how we now finally have a portable parallel programming model, and predicted that half the people in the room would be using OpenCL by the next SC conference. I guess we’ll see in just a couple of months.

So, given all the hype, what can we expect from OpenCL? Is it really simple? Is it portable? Will it replace other parallel programming models? It’s still a little early; we’ve seen a multicore demonstration of OpenCL from AMD, a limited developer release from NVIDIA, and Apple is planning to release its next generation operating system in September, including OpenCL support. Yet we can prognosticate, given what we know about the language and related technologies.

Is it simple?

Simple is a loaded term. One can claim anything is simple if it’s simpler than something else that’s even more complex. But I’ve said before that parallel programming is hard, and is going to remain so. Perhaps that’s overstating the case: we can probably make it easy to write parallel programs that perform badly, but I’m assuming that isn’t the intent and is obviously unacceptable.

So, is there a metric by which we can claim that OpenCL is simple? I’m going to give a qualified no. In OpenCL, you have a host and one or more compute devices; you have a host program that launches kernels; you have task parallelism and data parallelism, work-items and work-groups; you have contexts and command queues; you have global memory, local memory, and private memory, not to mention constant memory, with different consistency models across the memory types; you have buffer objects, image objects, and sampler objects; and you have language restrictions and language extensions. It’s not simple.

Over fifty years of programming language development has led us to expect certain features in our programming environment, such as simple access to modular programming (procedures, argument passing, linkers), which are not so well represented in OpenCL. There’s no linker for GPU kernels in OpenCL; you must include library calls to build a device program and extract a handle to the kernel function. There’s no direct function call to the kernel; you must set up the arguments one at a time with a series of library calls. The OpenCL strategy was to not perturb the host programming language with additional keywords or syntax, but to encapsulate additional functionality in a host-side library. You can expect any number of OpenCL preprocessors to convert a higher-level representation (a la NVIDIA’s CUDA) to the lower-level OpenCL. If I haven’t convinced you that OpenCL isn’t simple, look at an OpenCL example program, in this case to compute the sum of a vector of numbers (provided by Apple).

So, what’s my qualification? If you had looked at the hoops programmers had to jump through to program GPUs for general purpose computing before OpenCL and CUDA, you’d agree that these languages are a very large step in the right direction. Much simpler, though not really simple.

Is it portable?

Again, we should define our metric. We’ve grown accustomed to being able to write programs that will run across a wide variety of target systems with almost no modifications. Compiled languages (Fortran, C, C++) will require a recompile for a new processor or operating system, and may need changes for system calls. Just-in-time platforms (for Java, C#) and interpreted languages (Perl, Python) don’t even need that.

However, in the HPC world we want more than the program to just work; we want it to deliver high performance. The gold standard in this regard has been vectorizing compilers. When the Cray-1 was delivered in 1976, the primary method to access the vector instructions was to use the vectorizing Fortran compiler, CFT (Cray Fortran Translator). The compiler generated a vectorization listing telling the user what loops were or were not vectorized; if there were vector hazards (data dependences) or other limitations (IO statements, procedure calls, conditionals), the listing would call them out. Programmers learned to read the listing and, if the loop were critical to performance, rewrite the loop so it would vectorize. They were rewarded with vector performance on that application, and they learned how to write code that would vectorize for their next project. Moreover, and this is the key, those programs would also vectorize on subsequent generations of vector machines from Fujitsu, NEC, IBM, Convex, Alliant, Hitachi, and others. Those vector programs were not just portable, they were performance portable.

Side note: We use exactly the same compiler technology for today’s packed instruction set extensions, like SSE on X64 and Altivec on IBM Power. And enjoy the same performance portability benefits as well.

So, are OpenCL programs going to be performance portable or not? Sadly, not. An OpenCL kernel is a low-level representation of the work to be done on the accelerator or GPU itself. To optimize the performance, you must know and take advantage of device-specific information such as the optimal number of work-items in a work-group, the amount of local memory and perhaps the number of banks, and trade-offs between parallelism and efficiency. An optimized kernel for one device may or may not perform well on another, but is unlikely to be optimal for that second device. This is not a condemnation of OpenCL, or even a failure of the language. It was intended and designed to be a low-level, high-performance, close-to-the-metal, efficient programming interface, borrowing phrases. The intent is apparently that OpenCL will support an ecosystem of tools, middleware and applications, not to be the portable parallel abstraction. Even though the kernels are not performance portable, even if you have to tune your kernels for each device, the ability to write your kernels for different devices in the same language is a great leap forward from where we are today.

Will it replace or supersede other parallel programming models?

What other models might it replace? The dominant parallel programming models are MPI for cluster programming and OpenMP for shared memory programming. Many others exist: Java threads, TBB, Map/Reduce, Unified Parallel C, Cilk, and many more, but let’s stick with the classics.

MPI programming targets a network of homogeneous or heterogeneous nodes running in MIMD mode, each communicating and synchronizing with other nodes, one-to-one or collectively. The node program is a complete scalar program; from the language perspective, it just happens to use a library that happens to communicate through I/O channels with other copies of itself that just happen to be running at the same time. OpenMP programming targets a homogeneous shared-memory multiprocessor running in MIMD mode, with a master thread that controls when the other threads running on other processors start to cooperate to help with parallel work. Unlike an MPI node program, the OpenMP program is a global program; it describes all the work to be done, with directives telling the compiler which parts to run on the master thread, which parts to run redundantly on all threads, and (most importantly) which parts to split up among the worker threads.

OpenCL kernel routines are like MPI node programs; they describe the work to be done by one thread. The OpenCL host program is like the OpenMP master thread; it controls the execution of the kernels and the parallel threads. OpenCL uses shared memory in the compute devices, like OpenMP, but has a weaker consistency model and weaker synchronization semantics. The requirement to break up the parallel part of the program into kernels, with a single host thread acting as master, and the shared memory among the compute devices, makes OpenCL an unlikely candidate to replace MPI on large network supercomputers. The separate host and compute device memory, very limited synchronization, and non-incremental nature make it unlikely to replace OpenMP as the preferred method to program multicore or other shared memory multiprocessors.

Will OpenCL replace CUDA?

This is a more interesting question. The OpenCL JumpStart Guide from NVIDIA points out that CUDA has two library API layers. There is a Runtime API, which includes some language syntax extensions, and which automates some of the handshaking between the host thread and the compute device. There is also a lower level, Driver API, which requires the programmer to manage all the interaction between the host and the device. OpenCL is quite similar in many respects to CUDA using the Driver API, and the above mentioned JumpStart Guide gives the correspondence between the two.

Will NVIDIA adopt OpenCL in place of CUDA? That would be silly; NVIDIA already has a large contingent of CUDA users, and CUDA C does include the higher level, easier-to-use Runtime API. NVIDIA has had a two-year head start in the GPU/Accelerator programming game. While OpenCL has the potential to level the playing field somewhat, the CUDA Runtime API gives NVIDIA a slight edge in programmability, so NVIDIA will not likely abandon it.

Does OpenCL have any value at all?

We certainly hope so, given how much effort has gone into its definition and various implementations from AMD, Apple, NVIDIA, and certainly others. Today, if you have the right kind of parallelism in your application, and you’re willing to expend the effort to recast your program in CUDA kernels and write the host program interface, you can see some dramatic performance improvements. Replacing CUDA with OpenCL may allow you to port your program from an NVIDIA device to an ATI GPU or Intel Larrabee with only an incremental effort. So, yes, there is definite value here. The question remaining to be answered is how much value, and how long will it continue to be valuable. I can’t answer that, and I don’t want to raise the FUD (fear, uncertainty, doubt) factor. If Intel’s Larrabee and other similar devices, which support a richer programming model, replace GPUs as the dominant compute accelerator, OpenCL may join the dead language heap, along with Thinking Machine’s C*, MasPar’s MPL, and ClearSpeed’s Cn. However, if GPUs and other accelerators can continue to use the OpenCL programming model efficiently, and deliver high performance at relatively low cost, then OpenCL can enjoy a long, useful life. My opinion: it’s likely to be more useful as a target language for higher level programming languages, tools, and environments, or as a language to implement optimized libraries, than as a language for a more general programming community.

So let’s accept and even celebrate OpenCL for what it is, and not try to make it what it can’t be. There’s danger is raising expectations too high, or claiming too much (a la Bernie Madoff); OpenCL can be influential and succeed without replacing other parallel languages. To correct Steve Job’s quote: “While OpenCL is very similar in many respects to NVIDIA’s CUDA, it adds features to take advantage of other targets; and though it’s quite complex, it has the potential to deliver very high performance, and is much easier than trying to map your computation into OpenGL or graphics primitives.” Hype I can agree with; but then, I’m not the Apple CEO.


Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (, a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

Azure Debuts AMD EPYC Instances for Storage Optimized Workloads

December 5, 2017

AMD’s return to the data center received a boost today when Microsoft Azure announced introduction of instances based on AMD’s EPYC microprocessors. The new instances – Lv2-Series of Virtual Machine – use the EPY Read more…

By John Russell

HPE Extreme Performance Solutions

Unleash the Next Generation of HPC with Memory-Driven Compute

Today’s enterprises are faced with an ever-growing volume of data that contains immense value and intelligence for those who can properly collect, process, and store it. Read more…

Bryant Departs Intel For Google Cloud

December 5, 2017

Google has upped its cloud game with its recruitment of Diane Bryant, the former Intel Corp.'s datacenter boss who becomes chief operating officer of Google Cloud. Bryant, an engineer who worked her way up through the Read more…

By George Leopold

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This