Solace Systems Sets the Pace in the Race to Zero Latency

By Michael Feldman

September 14, 2009

In the algorithmic trading business, speed is literally money. An extra microsecond of latency between the market feed and the trading application could be worth a million dollars to a large investment bank or hedge fund. The annual take of algorithmic trading in the US is estimated in the billions of dollars per year — $8 billion according Tabb Group, a research and advisory firm for the financial industry.

That’s why companies that offer the fastest market messaging platforms are getting a lot of attention these days. In financial applications, messaging filters and massages the data, and as such, is the critical layer between the market data feed, or feed handler, and the trading application. For example, messaging middleware is the software that makes the decision to send MSFT messages to a subscriber that is looking to buy or sell Microsoft stock. But getting that information to the subscriber as quickly as possible is what determines how much of an advantage the customer has.

The lucrative messaging business has attracted a number of companies, including TIBCO Software, 29West, IBM, RTI, Tervela, NYSE Technologies, and Solace Systems. Of these, Solace has been one of the most aggressive in attacking the latency issue. The company’s big claim to fame is its hardware approach to message acceleration. Traditional messaging is accomplished via software running on servers, but Solace has developed what they call a message (or content) router. It’s implemented as an appliance that provides the message processing using FPGAs, network processors, and other off-the-shelf ASICs. The company’s Unified Messaging Platform API provides client applications access to the functionality.

According to Larry Neumann, Solace’s senior vice president of marketing and alliances, the hardware-based message router is analogous to what IP routers did for Internet, namely to commoditize software functionality into the network. The advantage, he says, is that the hardware approach gives a 10x performance boost — in some cases, 100x — compared to software-based messaging, mainly by eliminating all the context switching between the OS and the application. Also, FPGAs and ASICs just generally outperform CPUs for these kinds of high throughput workloads.

“Being a newer entrant into the market, if we were 20 percent faster, it would be very hard to displace the incumbent,” says Neumann. “But if you’re 10 times faster, they’ll take a good hard look at you; if you’re 100 times faster, it becomes pretty easy.”

The hardware is not identical for all use cases. Solace offers six different function-specific “blades” or cards that can be included in a configuration, and not all of them necessarily apply to financial market applications (Solace’s message platform offerings are applicable across a variety of application areas outside financial services, such as real-time billing systems, IPTV, mobile content distribution, and even geospatial applications like emergency alerts, proximity marketing, and social networking). For algorithmic trading, the minimum configuration is the network acceleration blade and the topic routing blade.

TIBCO Software and Tervela also offer hardware-based messaging appliances. In TIBCO’s case, the company is actually employing Solace blades, which are used to implement TIBCO’s Rendezvous messaging software in firmware. Tervela’s version is its own TMX Message Switch, which also uses a combination of ASICs and FPGAs to implement messaging middleware.

In all cases, the hardware-based appliances promise at least an order of magnitude boost in performance compared to software solutions. This allows the financial customers to replace many servers with a single appliance, reducing the datacenter footprint, along with the attendant power and cooling. Latency within the appliance is predictably low, but the end-to-end latency is still dependent upon the other pieces of the market trading system: the feed handler and the algorithmic engine on the server. Because of the separate devices and the network hops between them, the best-case latency is in the tens of microseconds.

The next logical step is to integrate the components into a single system in order to avoid all the network latency and intermediate memory copies. And that’s what Solace Systems has done. Announced on Monday at the High Performance Computing on Wall Street conference in New York, Solace has demonstrated sub-microsecond latencies by adding support for inter-process communications (IPC) via shared memory. Using Solace’s latest Unified Messaging Platform API, developers will be able to fold the ticker feed function, the messaging platform, and the algorithmic engine into the same application, and use shared memory IPC as the data transport.

Such applications do not rely on special hardware appliances. All you need is a standard multicore x86 server, preferably sitting in a colocation facility right next to the exchange. With quad-core chips now the norm, and eight-core chips (and greater) on the horizon, single servers are becoming powerful enough to handle these integrated trading applications. Solace ran tests with a million 100-byte messages per second, achieving an average latency of less than 700 nanoseconds using a single Intel Xeon “Harpertown” 5400 processor.

To put that in perspective, currently the largest market feed is delivered by the Options Price Reporting Authority (OPRA), which coincidentally tops out at about a million messages per second. However, those numbers are projected to rise, and as they do, latency tends to rise with it. Fortunately, core counts are increasing as well. Intel’s eight-core Nehalem EX processor is expected to be launched in early 2010, essentially doubling the processing power of the quad-core generation.

In fact, Solace CTO Shawn McAllister believes the Nehalem processors, in general, with their larger caches and better memory bandwidth, should deliver even lower latencies than they demonstrated with their Harpertown tests. He says for best results you want to keep each application on the same processor, and nail individual application components (like the feed handler and algo engine) to specific cores. That way, application data can be shared between the cores in the Level 2 cache, reducing latency even further.

Not all the applications that make up an automated trading suite can be run in a single server, however. There are risk management systems, order executions systems, and back-end settlement systems, among others, that can’t all be shoe-horned onto a single motherboard. The idea, of course, would be to put the most pathologically latency-sensitive trading applications in the server, and spread the rest out across the datacenter using the more traditional feed handlers, message platforms and servers. McAllister says one of the advantages of their model is that their common API allows developers to deploy the same code in a networked environment as in a shared memory one, since the middleware takes care of the data transport underneath the programmer interface.

Solace is not the only vendor to have thought to implement a messaging system using IPC on shared memory. In February, 29West introduced a similar IPC transport offering, claiming end-to-end latencies in the 3 to 5 microsecond range. But with Solace breaking the 1 microsecond barrier, McAllister thinks they’ve got a game changer — at least for the time being. Considering there is so much money at stake in algorithmic trading, the race toward zero latency is far from over.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This