Solace Systems Sets the Pace in the Race to Zero Latency

By Michael Feldman

September 14, 2009

In the algorithmic trading business, speed is literally money. An extra microsecond of latency between the market feed and the trading application could be worth a million dollars to a large investment bank or hedge fund. The annual take of algorithmic trading in the US is estimated in the billions of dollars per year — $8 billion according Tabb Group, a research and advisory firm for the financial industry.

That’s why companies that offer the fastest market messaging platforms are getting a lot of attention these days. In financial applications, messaging filters and massages the data, and as such, is the critical layer between the market data feed, or feed handler, and the trading application. For example, messaging middleware is the software that makes the decision to send MSFT messages to a subscriber that is looking to buy or sell Microsoft stock. But getting that information to the subscriber as quickly as possible is what determines how much of an advantage the customer has.

The lucrative messaging business has attracted a number of companies, including TIBCO Software, 29West, IBM, RTI, Tervela, NYSE Technologies, and Solace Systems. Of these, Solace has been one of the most aggressive in attacking the latency issue. The company’s big claim to fame is its hardware approach to message acceleration. Traditional messaging is accomplished via software running on servers, but Solace has developed what they call a message (or content) router. It’s implemented as an appliance that provides the message processing using FPGAs, network processors, and other off-the-shelf ASICs. The company’s Unified Messaging Platform API provides client applications access to the functionality.

According to Larry Neumann, Solace’s senior vice president of marketing and alliances, the hardware-based message router is analogous to what IP routers did for Internet, namely to commoditize software functionality into the network. The advantage, he says, is that the hardware approach gives a 10x performance boost — in some cases, 100x — compared to software-based messaging, mainly by eliminating all the context switching between the OS and the application. Also, FPGAs and ASICs just generally outperform CPUs for these kinds of high throughput workloads.

“Being a newer entrant into the market, if we were 20 percent faster, it would be very hard to displace the incumbent,” says Neumann. “But if you’re 10 times faster, they’ll take a good hard look at you; if you’re 100 times faster, it becomes pretty easy.”

The hardware is not identical for all use cases. Solace offers six different function-specific “blades” or cards that can be included in a configuration, and not all of them necessarily apply to financial market applications (Solace’s message platform offerings are applicable across a variety of application areas outside financial services, such as real-time billing systems, IPTV, mobile content distribution, and even geospatial applications like emergency alerts, proximity marketing, and social networking). For algorithmic trading, the minimum configuration is the network acceleration blade and the topic routing blade.

TIBCO Software and Tervela also offer hardware-based messaging appliances. In TIBCO’s case, the company is actually employing Solace blades, which are used to implement TIBCO’s Rendezvous messaging software in firmware. Tervela’s version is its own TMX Message Switch, which also uses a combination of ASICs and FPGAs to implement messaging middleware.

In all cases, the hardware-based appliances promise at least an order of magnitude boost in performance compared to software solutions. This allows the financial customers to replace many servers with a single appliance, reducing the datacenter footprint, along with the attendant power and cooling. Latency within the appliance is predictably low, but the end-to-end latency is still dependent upon the other pieces of the market trading system: the feed handler and the algorithmic engine on the server. Because of the separate devices and the network hops between them, the best-case latency is in the tens of microseconds.

The next logical step is to integrate the components into a single system in order to avoid all the network latency and intermediate memory copies. And that’s what Solace Systems has done. Announced on Monday at the High Performance Computing on Wall Street conference in New York, Solace has demonstrated sub-microsecond latencies by adding support for inter-process communications (IPC) via shared memory. Using Solace’s latest Unified Messaging Platform API, developers will be able to fold the ticker feed function, the messaging platform, and the algorithmic engine into the same application, and use shared memory IPC as the data transport.

Such applications do not rely on special hardware appliances. All you need is a standard multicore x86 server, preferably sitting in a colocation facility right next to the exchange. With quad-core chips now the norm, and eight-core chips (and greater) on the horizon, single servers are becoming powerful enough to handle these integrated trading applications. Solace ran tests with a million 100-byte messages per second, achieving an average latency of less than 700 nanoseconds using a single Intel Xeon “Harpertown” 5400 processor.

To put that in perspective, currently the largest market feed is delivered by the Options Price Reporting Authority (OPRA), which coincidentally tops out at about a million messages per second. However, those numbers are projected to rise, and as they do, latency tends to rise with it. Fortunately, core counts are increasing as well. Intel’s eight-core Nehalem EX processor is expected to be launched in early 2010, essentially doubling the processing power of the quad-core generation.

In fact, Solace CTO Shawn McAllister believes the Nehalem processors, in general, with their larger caches and better memory bandwidth, should deliver even lower latencies than they demonstrated with their Harpertown tests. He says for best results you want to keep each application on the same processor, and nail individual application components (like the feed handler and algo engine) to specific cores. That way, application data can be shared between the cores in the Level 2 cache, reducing latency even further.

Not all the applications that make up an automated trading suite can be run in a single server, however. There are risk management systems, order executions systems, and back-end settlement systems, among others, that can’t all be shoe-horned onto a single motherboard. The idea, of course, would be to put the most pathologically latency-sensitive trading applications in the server, and spread the rest out across the datacenter using the more traditional feed handlers, message platforms and servers. McAllister says one of the advantages of their model is that their common API allows developers to deploy the same code in a networked environment as in a shared memory one, since the middleware takes care of the data transport underneath the programmer interface.

Solace is not the only vendor to have thought to implement a messaging system using IPC on shared memory. In February, 29West introduced a similar IPC transport offering, claiming end-to-end latencies in the 3 to 5 microsecond range. But with Solace breaking the 1 microsecond barrier, McAllister thinks they’ve got a game changer — at least for the time being. Considering there is so much money at stake in algorithmic trading, the race toward zero latency is far from over.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This