Solace Systems Sets the Pace in the Race to Zero Latency

By Michael Feldman

September 14, 2009

In the algorithmic trading business, speed is literally money. An extra microsecond of latency between the market feed and the trading application could be worth a million dollars to a large investment bank or hedge fund. The annual take of algorithmic trading in the US is estimated in the billions of dollars per year — $8 billion according Tabb Group, a research and advisory firm for the financial industry.

That’s why companies that offer the fastest market messaging platforms are getting a lot of attention these days. In financial applications, messaging filters and massages the data, and as such, is the critical layer between the market data feed, or feed handler, and the trading application. For example, messaging middleware is the software that makes the decision to send MSFT messages to a subscriber that is looking to buy or sell Microsoft stock. But getting that information to the subscriber as quickly as possible is what determines how much of an advantage the customer has.

The lucrative messaging business has attracted a number of companies, including TIBCO Software, 29West, IBM, RTI, Tervela, NYSE Technologies, and Solace Systems. Of these, Solace has been one of the most aggressive in attacking the latency issue. The company’s big claim to fame is its hardware approach to message acceleration. Traditional messaging is accomplished via software running on servers, but Solace has developed what they call a message (or content) router. It’s implemented as an appliance that provides the message processing using FPGAs, network processors, and other off-the-shelf ASICs. The company’s Unified Messaging Platform API provides client applications access to the functionality.

According to Larry Neumann, Solace’s senior vice president of marketing and alliances, the hardware-based message router is analogous to what IP routers did for Internet, namely to commoditize software functionality into the network. The advantage, he says, is that the hardware approach gives a 10x performance boost — in some cases, 100x — compared to software-based messaging, mainly by eliminating all the context switching between the OS and the application. Also, FPGAs and ASICs just generally outperform CPUs for these kinds of high throughput workloads.

“Being a newer entrant into the market, if we were 20 percent faster, it would be very hard to displace the incumbent,” says Neumann. “But if you’re 10 times faster, they’ll take a good hard look at you; if you’re 100 times faster, it becomes pretty easy.”

The hardware is not identical for all use cases. Solace offers six different function-specific “blades” or cards that can be included in a configuration, and not all of them necessarily apply to financial market applications (Solace’s message platform offerings are applicable across a variety of application areas outside financial services, such as real-time billing systems, IPTV, mobile content distribution, and even geospatial applications like emergency alerts, proximity marketing, and social networking). For algorithmic trading, the minimum configuration is the network acceleration blade and the topic routing blade.

TIBCO Software and Tervela also offer hardware-based messaging appliances. In TIBCO’s case, the company is actually employing Solace blades, which are used to implement TIBCO’s Rendezvous messaging software in firmware. Tervela’s version is its own TMX Message Switch, which also uses a combination of ASICs and FPGAs to implement messaging middleware.

In all cases, the hardware-based appliances promise at least an order of magnitude boost in performance compared to software solutions. This allows the financial customers to replace many servers with a single appliance, reducing the datacenter footprint, along with the attendant power and cooling. Latency within the appliance is predictably low, but the end-to-end latency is still dependent upon the other pieces of the market trading system: the feed handler and the algorithmic engine on the server. Because of the separate devices and the network hops between them, the best-case latency is in the tens of microseconds.

The next logical step is to integrate the components into a single system in order to avoid all the network latency and intermediate memory copies. And that’s what Solace Systems has done. Announced on Monday at the High Performance Computing on Wall Street conference in New York, Solace has demonstrated sub-microsecond latencies by adding support for inter-process communications (IPC) via shared memory. Using Solace’s latest Unified Messaging Platform API, developers will be able to fold the ticker feed function, the messaging platform, and the algorithmic engine into the same application, and use shared memory IPC as the data transport.

Such applications do not rely on special hardware appliances. All you need is a standard multicore x86 server, preferably sitting in a colocation facility right next to the exchange. With quad-core chips now the norm, and eight-core chips (and greater) on the horizon, single servers are becoming powerful enough to handle these integrated trading applications. Solace ran tests with a million 100-byte messages per second, achieving an average latency of less than 700 nanoseconds using a single Intel Xeon “Harpertown” 5400 processor.

To put that in perspective, currently the largest market feed is delivered by the Options Price Reporting Authority (OPRA), which coincidentally tops out at about a million messages per second. However, those numbers are projected to rise, and as they do, latency tends to rise with it. Fortunately, core counts are increasing as well. Intel’s eight-core Nehalem EX processor is expected to be launched in early 2010, essentially doubling the processing power of the quad-core generation.

In fact, Solace CTO Shawn McAllister believes the Nehalem processors, in general, with their larger caches and better memory bandwidth, should deliver even lower latencies than they demonstrated with their Harpertown tests. He says for best results you want to keep each application on the same processor, and nail individual application components (like the feed handler and algo engine) to specific cores. That way, application data can be shared between the cores in the Level 2 cache, reducing latency even further.

Not all the applications that make up an automated trading suite can be run in a single server, however. There are risk management systems, order executions systems, and back-end settlement systems, among others, that can’t all be shoe-horned onto a single motherboard. The idea, of course, would be to put the most pathologically latency-sensitive trading applications in the server, and spread the rest out across the datacenter using the more traditional feed handlers, message platforms and servers. McAllister says one of the advantages of their model is that their common API allows developers to deploy the same code in a networked environment as in a shared memory one, since the middleware takes care of the data transport underneath the programmer interface.

Solace is not the only vendor to have thought to implement a messaging system using IPC on shared memory. In February, 29West introduced a similar IPC transport offering, claiming end-to-end latencies in the 3 to 5 microsecond range. But with Solace breaking the 1 microsecond barrier, McAllister thinks they’ve got a game changer — at least for the time being. Considering there is so much money at stake in algorithmic trading, the race toward zero latency is far from over.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This