With Power Comes Complexity

By John West

September 14, 2009

When rPath CTO Erik Troan speaks during the opening session at this year’s High Performance Computing on Wall Street conference on Monday morning, he’ll be emphasizing something that old school HPC’ers are very familiar with: complexity. Even moderately-sized HPC clusters are a study in complexity: everything — from operating system patches to compilers and job schedulers to an individual user’s shell preferences — interacts with everything else. Getting it all working and hammered into a stable system after the initial installation can take upwards of six months (in the average case; I once had a pair of systems that took nearly two years to stabilize, though) in a process that can seem a lot like playing whack-a-mole without a hammer. Once a system is stable, administrators and center management are understandably loathe to make a change.

And yet change is precisely what is required in today’s large-scale computing environments. When clusters were primarily confined to research environments, whether in national labs or R&D units of large corporations, then it was acceptable to expect the users to adapt to the environment. If a system took a week to stabilize after an upgrade, no one liked it, but users accepted it, not least because there usually wasn’t a lot of discipline in the system change process. There might have been a list of what changed, but in many cases even that list is not made today until after the upgrade is complete and everyone gets together to compare notes.

As HPC continues to be pulled deeper into the back offices of all kinds of companies, the line between “enterprise” computing and “high performance” computing is blurring. Enterprise users expect mature systems management, including detailed planning and management with detailed manifests sufficient to completely rebuild the operating environment at any point in time, whether to rerun a legacy application or to roll back out of an upgrade that had unexpected consequences down the road.

Although old school HPC’ers are familiar with this complexity, they haven’t done much to develop the tools and disciplines to manage it in a controlled fashion. Configuration management databases (CMDBs) are not uncommon in large, production-oriented HPC centers. But CMDBs are frequently de-coupled from implementation, and this means that it is pretty easy to ignore the CM process “just this once” to make a “really important” change, at which point the database is out of synch with reality. Good admins keep notes and backups, but these tend to depend upon individual discipline and are often manual processes with a little cron scheduling thrown in.

Whittling down complexity is rPath’s mission. Before he founded the company, Erik Troan served as Red Hat’s VP of Product Engineering, chief developer for Red Hat Software, and in several other roles. He was responsible for leading development for Red Hat Linux, RPM, and Anaconda, and has co-authored two editions of Linux Application Development. Excellent chops for a guy that’s now leading a company that positions itself to help manage the complexity of the HPC software environment.

rPath is a privately-held company of about 30 people that has been through three rounds of venture funding since its founding in 2005. The company offers a release automation platform (automatic provisioning) that includes version control for everything on a system: firmware, OS, patches, compilers, linkers and applications.

Administrators can use rPath’s tools to document the complete state of a cluster (or many clusters), set up a planned change, deploy that change to all the systems in a cluster, and automatically roll back if it doesn’t go well. Troan identifies RPM and the many front-ends built on top of RPM (yum and so on) as source-level management tools, and distinguishes rPath’s tools from them based on their ability to manage and provision everything from the OS up, including complete virtual machine images if you go for that sort of thing.

When Troan talks on Monday morning, he will emphasize three rules for a scalable approach to software infrastructure management:

  1. Stay application-centric.
  2. Keep versions controlled on everything.
  3. Automated provisioning is key.

Troan says that commercial organizations often mirror the approach to cluster building taken in research environments: start with the hardware and the operating system, and make everything else work out. This can work just fine in an environment where COTS packages don’t dominate, or where you are working with a very mature application that is flexible in terms of its operating environment. But if your application is more finicky, or held together with bailing wire and tape, or you don’t have access to the source, this is a recipe for pain. Sure you can partition up your cluster and deploy different operating systems to support all your various application requirements, but only if you actually know what those requirements are.

The point is to start with the problem the cluster is supposed to solve, figure out what tools you need to solve that problem, and build the environment that supports it. This sounds straightforward, but a key error that can happen is that the application group will do this kind of planning and then not communicate it to the technology team running the acquisition, causing problems in implementation.

Troan’s second key for scalable HPC infrastructure management is to keep track of the version on everything, and don’t make any ad hoc changes. Basically the idea is that organizations need to think of their clusters as a delicately balanced ecosystem where everything is interrelated. Strong version control will allow organizations to track back through a change that breaks something and know exactly where to look for a problem, and will also support forward planning for change.

Up to this point in Troan’s three rules, we only have a process. In fact, we really don’t have anything more than one can get by establishing a strong CM discipline in an organization with a good CMDB and maybe some ITIL practice thrown in for good measure.

Troan says the key for tying it all together is coupling version control and documentation of state with the implementation of change through an automated provisioning system. Changes are rolled forward automatically and can be rolled back as needed to any prior state. The documentation is always complete provided that the tool managing version control is linked to the tool managing implementation deployment, and if administrators always use the system (a problem) for any change, then configuration drift is eliminated as a source of instability in your production systems.

This is a discipline that I currently employ among the desktop systems in my organization, for example, but not on my HPC systems. It seems obvious now that I think about it.

rPath’s technology is seeing adoption in real HPC environments, and Troan says that organizations like the Department of Energy labs, various companies in Europe, and Sony Pictures Imageworks are using rPath tools to manage large-scale compute clusters today.

Troan’s three rules are obviously informed by where he has positioned his company and his career; they are certainly necessary, but they may not be sufficient for the establishment of a sound discipline to tame what are often wild and wooly HPC deployments. Still, I am glad to see this conversation happening at this particular event. The HPC conversation is well advanced on Wall Street, and as the adoption of our technologies there increases, they will need mileposts to help them merge our two worlds together.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This