Lawrence Livermore Builds Stable of Workhorse Clusters

By Michael Feldman

September 23, 2009

After the 1992 moratorium on underground testing of nuclear weapons in the US went into effect, the Department of Energy’s National Nuclear Security Administration’s (NNSA) was tasked to maintain the country’s nuclear weapon deterrent via computing simulations. As a result, Lawrence Livermore National Laboratory (LLNL) and its two sister labs at Los Alamos and Sandia became the recipients of some of the most muscular computing hardware in the world. Today these institutions are at the forefront of supercomputing expertise, both hardware and software.

Because the weapons simulation applications are always looking to achieve higher resolution, higher fidelity, and full-system modeling, there is an ongoing demand for ever-more powerful capability-class supercomputers. Today, Los Alamos houses what is ostensibly the world’s most powerful computer — Roadrunner — which clocks in at over a petaflop. In a couple of years, LLNL is slated to deploy “Sequoia,” a 20-petaflop IBM Blue Gene/Q machine, and a likely contender for the top supercomputer in 2011. Sequoia’s predecessor, “Dawn,” is a 500 teraflop Blue Gene/P machine installed earlier this year at Livermore.

But according to Mike McCoy, who heads Livermore’s Scientific Computing and Communications Department, it’s not all about these elite capability machines. He says 10 to 30 percent of the computational resources at the lab are devoted to capacity systems, that is, commodity HPC Linux clusters. The reason is simple. There is a lot of computing to be done, and time on the expensive capability systems is dear. By necessity a lot of application work has to be developed and tested on these smaller, less expensive machines as a way to contain costs.

There is also quite a bit of unclassified science work performed at the lab in the areas of climate, biology, molecular dynamics, and energy research. Some of this basic science supports the weapons programs, but the remainder is just part of the NNSA’s larger mission of furthering national security. The unclassified work also serves to nurture the lab’s scientists, and without them, there is no weapons program. In any case, the vast majority of this class of computing takes place on vanilla Linux clusters, albeit very large ones.

Today at Livermore, capacity clusters account for 404 teraflops of computing power, while the capability machines deliver 1,324 teraflops. Another 205 teraflops are available in visualization and collaboration systems. The most powerful capability system at the facility is the half-petaflop Dawn, while the largest capacity cluster is Juno, which weighs in at 167 teraflops.

HPC machines at Lawrence Livermore National Laboratory

Livermore has relied on a number of cluster computer vendors over the years. In 2002, the now-defunct Linux Networx installed a the MCR cluster, which delivered a 7.6 teraflops, a performance level that earned it the number three spot on the TOP500 list in June 2003. A more recent vendor is Appro, who won the Peloton contract in 2006 and then the subsequent Tri-Lab Linux Capacity Cluster (TLCC) deal, which served all three NNSA labs.

Today Lawrence Livermore appears to be grooming Dell for some major deployments. Up until last year, the only Dell machines at the lab were sitting on people’s desks. But in November 2008, the company became the cluster partner on the Hyperion project, a testbed system to be used to develop system and application software for HPC. The idea was to provide a platform for developers to build and test codes at scale before they are deployed on larger production systems. That effort has produced some early results including simulating the file system and I/O rates of the future Sequoia system using Hyperion’s InfiniBand and Ethernet SANs.

Last week, Michael Dell met with LLNL officials at Livermore to get a sense of what the NNSA is expecting from its future cluster system. The agency’s goal is to maintain at least a 1:10 performance ratio between capacity systems and capability systems. Today that means you need roughly a 100 teraflop cluster to match up with the purpose-built one-petaflop supers. With Sequoia coming online in 2011, the folks at LLNL are already thinking about clusters in the two-petaflop range. Beyond that the lab see the need for 100-teraflop commodity machines in 2018, in anticipation of capability machines hitting the exaflop mark. That means vendors need to scale today’s commodity clusters by a factor of 10 over the next 9 years.

Recently Dell installed “Coastal,” an 88.5 teraflop system that is being used by the Lawrence Livermore’s National Ignition Facility to help with fusion research. Next year, with Dell’s help, the lab will be more than doubling the performance of the 90 teraflop Hyperion system with “Sierra,” a new cluster that is spec’ed to reach 220 teraflops.

Michael Dell is hoping that’s just the beginning. From his point of view, designing systems pushing the envelope of scalability and technology dovetails nicely with the company’s other big server segments, namely web services infrastructure and cloud computing. For example, the inclusion of SSD technology to increase I/O performance in the Livermore’s Coastal cluster also turned out to be a good solution for Dell servers deployed for a Web search provider in China (presumably Baidu). He sees the demand for these super-sized machines inside and outside of HPC as two sides of the same hyperscale coin. And, he says, the technology transfer travels in both directions. “You always learn from your best customers,” says Dell.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This