Cray XT5m Midrange Supercomputer Builds Market Momentum

By Nicole Hemsoth

September 28, 2009

In March 2009, Cray announced the Cray XT5m system, a compatible midrange extension of the high-end Cray XT5 product line that was first to break the sustained petaflop performance barrier on real-world applications. HPCwire asked Barry Bolding, Cray’s vice president of scalable systems, for an update on the midrange product.

Cray XT5HPCwire: How is the Cray XT5m midrange supercomputer doing in the market place?

Bolding: We disclosed one customer name with the March announcement, the High Performance Computing Center Stuttgart, where it’s being used for automotive, academic and public sector work. We have also publically announced a second customer, the Finnish Meteorological Institute (FMI) in the production weather forecasting segment. The Cray XT5m has been meeting our sales goals since then. Granted, our expectations for the first six months were fairly modest because the midrange is a new space for us and we viewed this as a learning period. The good news is that we have validated that the XT5m can be a leader in the mid-range. We have won customers in several of our key target segments and our pricing is very competitive in this price sensitive space so we expect higher volumes going forward. Today we have a large number of bids outstanding in academia, automotive, aerospace, pharma and weather forecasting, as well as in government and R&D labs.

HPCwire: Why did Cray decide to develop this product?

Bolding: There were several reasons. We were consistently running into procurements that were in the midrange and needed a more price-competitive system for that space, which we view as a growth area for us. According to IDC, Cray is the current global market share leader for HPC systems priced at $3 million and up, but we have a very small presence in the midrange segment. Many of the characteristics of our largest machines are applicable in the midrange, but to succeed in this space we needed to develop a price-competitive product, turn around procurements faster, and provide a wider range of ISV applications. ISV applications are also important at the high end, but industry typically buys midrange systems and relies more heavily on third-party apps than government and academia do. The Cray XT5m is the initial product on our midrange roadmap.

HPCwire: Why would someone buy a Cray XT5m system instead of a same-size cluster? What are the key differences?

Bolding: Primarily they get Cray’s more capable SeaStar interconnect and interconnect roadmap. The Cray SeaStar has proven itself over the past several years as the industry-leading interconnect for MPI scalability.  With the Cray SeaStar interconnect, the Cray XT5m handles complex messaging traffic very efficiently.  You also get the entire Cray software stack that has been scaled and validated up to the petascale performance level, plus the network roadmap driving toward global addressability and high-performance UPC and Co-Array Fortran, along with MPI of course. So, Cray XT5m customers are buying into a broader portfolio than just a typical midrange system.  They’re buying into the demonstrated petascale scalability of the XT5 architecture. To achieve true scaling today, even at midrange size, one needs a full portfolio of network, software and infrastructure support, which Cray provides in the XT5m. And with multicore processors becoming prevalent, users will soon be facing the need to scale substantially higher even with midrange systems, especially starting in 2010.  Our midrange systems are designed to benefit from Cray’s high-end system development and this will continue. For example, the Cray XT5m line provides the same TCO benefits to our midrange customers as our largest supercomputer customers enjoy with the ECOphlex cooling technology we developed for petascale systems.

HPCwire: Assuming the Cray XT5m has a more capable network and memory subsystem than a standard cluster, with better bandwidth and latency characteristics, wouldn’t it be able to tackle a broader range of applications efficiently?

Bolding: The Cray XT5m today is a midrange industry leader from a network bandwidth and latency perspective. This gives users an important advantage over commodity InfiniBand networks and allows the Cray XT5m to handle a broader range of applications efficiently. The system is aimed at codes scaling to 256 cores and beyond, and in this range users typically see significant benefits from the overall system and software design.

HPCwire: Are customers using their Cray XT5m systems as their main HPC systems or for specific portions of their workloads?

Bolding: It varies. In production weather forecasting, we have a customer using it as their primary production system. At academic sites it varies from being primary system to one among multiple HPC systems. Some users are experimenting with the new functionalities, including the network features and the Cray software and compilers. It’s also allowing users to experiment with scalability in ways they haven’t been able to do before. So, the Cray XT5m is being used both as a development platform and a production platform.

HPCwire: Is there any customer who operates both a Cray XT5 and a Cray XT5m system?

Bolding: There are customers running applications across both Cray XT5 and Cray  XT5m systems, although they don’t have both systems in-house today.  By the end of this year, we’ll have sites that have both in their data centers.

HPCwire: The XT5m is a compatible downward extension of the Cray XT5 architecture, but uses a 2D torus interconnect instead of the XT5’s 3D torus. What’s the strategy behind this change?

Bolding: It’s a cost-saving strategy for the midrange scale. With a Cray XT5m system consisting of 1-6 cabinets, customers tend not to have applications that require the full 3D topology as much as with a larger, high-end Cray XT5. We right-sized the Cray XT5m for midrange requirements, including the interconnect, allowing us to provide a price-competitive product in this space. We’ve done extensive studies on application performance on the Cray XT5m, and there has been minimal performance impact at six cabinets and below. Above that size, you need the Cray XT5’s 3D torus to maintain scalability. For most apps in the 1-6 cabinet range, performance degradation due to the topology is less than 5 percent even for applications running across several thousand cores of a Cray XT5m.

HPCwire: If a site maxes out on their XT5m, what’s the upgrade path to a Cray XT5 system?

Bolding: It’s very simple. Today, it just involves replacing the network mezzanine card and adding more cables to transform the 2D torus into a 3D torus. We’ll make the upgrade path even simpler in the future of our midrange systems.

HPCwire: Do you expect some users to take advantage of non-MPI programming models that are available on the XT5m, such as SHMEM, UPC and Co-Array Fortran?

Bolding: We do. We port those in the software today and will be making announcements of enhancements to the hardware support for some of these features in the next 12 months. We are committed to making more innovations and remaining a leader in HPC, and this requires providing our customers with multiple, high performance programming models.

HPCwire: What is the Data Virtualization Service that comes with the XT5 and XT5m, and why is it important?

Bolding: DVS is an important part of Cray systems. DVS is a flexible virtualization layer that Cray plans use to expand our software functionality and performance . One feature of DVS is that it can allow Cray to project various file systems onto the compute nodes (which are diskless on Cray XT5 systems). This allows Cray systems to act more like a standard commodity cluster if it needs to.  We support IO and storage functionalities that we haven’t in the past. We can share file systems with high-performance file systems on platforms other than clusters. Customers such as NERSC and Oak Ridge are doing very innovative things with file systems and DVS can play a role in providing the flexibility they need.  So, DVS helps us both with compute and IO/storage.

HPCwire: Where is the Cray XT5m product line headed in the future?

Bolding: We are going to continue driving into the midrange market, which is a segment that has excellent growth opportunities for Cray. We want to build a substantial and sustainable market presence there, especially with customers focused on scalability of applications. To grow the XT5m line we need to continue to be competitive on cost while improving price/performance, network scalability,  software features and ISV availability, and we’ll be doing all those things. We’ll also be improving the processor roadmap with new technologies coming into market place. Cray’s innovation, combined with AMD’s strong roadmap is a winning combination for the next few years for the entire XT family of systems. 
HPCwire: What should we look for next?

Bolding: At SC09, we plan to talk more specifically about our future plans for the Cray XT5m product line.

For more information on how the Cray XT5m is making petaflops performance affordable, download the AMD white paper here.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This