Cray XT5m Midrange Supercomputer Builds Market Momentum

By Nicole Hemsoth

September 28, 2009

In March 2009, Cray announced the Cray XT5m system, a compatible midrange extension of the high-end Cray XT5 product line that was first to break the sustained petaflop performance barrier on real-world applications. HPCwire asked Barry Bolding, Cray’s vice president of scalable systems, for an update on the midrange product.

Cray XT5HPCwire: How is the Cray XT5m midrange supercomputer doing in the market place?

Bolding: We disclosed one customer name with the March announcement, the High Performance Computing Center Stuttgart, where it’s being used for automotive, academic and public sector work. We have also publically announced a second customer, the Finnish Meteorological Institute (FMI) in the production weather forecasting segment. The Cray XT5m has been meeting our sales goals since then. Granted, our expectations for the first six months were fairly modest because the midrange is a new space for us and we viewed this as a learning period. The good news is that we have validated that the XT5m can be a leader in the mid-range. We have won customers in several of our key target segments and our pricing is very competitive in this price sensitive space so we expect higher volumes going forward. Today we have a large number of bids outstanding in academia, automotive, aerospace, pharma and weather forecasting, as well as in government and R&D labs.

HPCwire: Why did Cray decide to develop this product?

Bolding: There were several reasons. We were consistently running into procurements that were in the midrange and needed a more price-competitive system for that space, which we view as a growth area for us. According to IDC, Cray is the current global market share leader for HPC systems priced at $3 million and up, but we have a very small presence in the midrange segment. Many of the characteristics of our largest machines are applicable in the midrange, but to succeed in this space we needed to develop a price-competitive product, turn around procurements faster, and provide a wider range of ISV applications. ISV applications are also important at the high end, but industry typically buys midrange systems and relies more heavily on third-party apps than government and academia do. The Cray XT5m is the initial product on our midrange roadmap.

HPCwire: Why would someone buy a Cray XT5m system instead of a same-size cluster? What are the key differences?

Bolding: Primarily they get Cray’s more capable SeaStar interconnect and interconnect roadmap. The Cray SeaStar has proven itself over the past several years as the industry-leading interconnect for MPI scalability.  With the Cray SeaStar interconnect, the Cray XT5m handles complex messaging traffic very efficiently.  You also get the entire Cray software stack that has been scaled and validated up to the petascale performance level, plus the network roadmap driving toward global addressability and high-performance UPC and Co-Array Fortran, along with MPI of course. So, Cray XT5m customers are buying into a broader portfolio than just a typical midrange system.  They’re buying into the demonstrated petascale scalability of the XT5 architecture. To achieve true scaling today, even at midrange size, one needs a full portfolio of network, software and infrastructure support, which Cray provides in the XT5m. And with multicore processors becoming prevalent, users will soon be facing the need to scale substantially higher even with midrange systems, especially starting in 2010.  Our midrange systems are designed to benefit from Cray’s high-end system development and this will continue. For example, the Cray XT5m line provides the same TCO benefits to our midrange customers as our largest supercomputer customers enjoy with the ECOphlex cooling technology we developed for petascale systems.

HPCwire: Assuming the Cray XT5m has a more capable network and memory subsystem than a standard cluster, with better bandwidth and latency characteristics, wouldn’t it be able to tackle a broader range of applications efficiently?

Bolding: The Cray XT5m today is a midrange industry leader from a network bandwidth and latency perspective. This gives users an important advantage over commodity InfiniBand networks and allows the Cray XT5m to handle a broader range of applications efficiently. The system is aimed at codes scaling to 256 cores and beyond, and in this range users typically see significant benefits from the overall system and software design.

HPCwire: Are customers using their Cray XT5m systems as their main HPC systems or for specific portions of their workloads?

Bolding: It varies. In production weather forecasting, we have a customer using it as their primary production system. At academic sites it varies from being primary system to one among multiple HPC systems. Some users are experimenting with the new functionalities, including the network features and the Cray software and compilers. It’s also allowing users to experiment with scalability in ways they haven’t been able to do before. So, the Cray XT5m is being used both as a development platform and a production platform.

HPCwire: Is there any customer who operates both a Cray XT5 and a Cray XT5m system?

Bolding: There are customers running applications across both Cray XT5 and Cray  XT5m systems, although they don’t have both systems in-house today.  By the end of this year, we’ll have sites that have both in their data centers.

HPCwire: The XT5m is a compatible downward extension of the Cray XT5 architecture, but uses a 2D torus interconnect instead of the XT5’s 3D torus. What’s the strategy behind this change?

Bolding: It’s a cost-saving strategy for the midrange scale. With a Cray XT5m system consisting of 1-6 cabinets, customers tend not to have applications that require the full 3D topology as much as with a larger, high-end Cray XT5. We right-sized the Cray XT5m for midrange requirements, including the interconnect, allowing us to provide a price-competitive product in this space. We’ve done extensive studies on application performance on the Cray XT5m, and there has been minimal performance impact at six cabinets and below. Above that size, you need the Cray XT5’s 3D torus to maintain scalability. For most apps in the 1-6 cabinet range, performance degradation due to the topology is less than 5 percent even for applications running across several thousand cores of a Cray XT5m.

HPCwire: If a site maxes out on their XT5m, what’s the upgrade path to a Cray XT5 system?

Bolding: It’s very simple. Today, it just involves replacing the network mezzanine card and adding more cables to transform the 2D torus into a 3D torus. We’ll make the upgrade path even simpler in the future of our midrange systems.

HPCwire: Do you expect some users to take advantage of non-MPI programming models that are available on the XT5m, such as SHMEM, UPC and Co-Array Fortran?

Bolding: We do. We port those in the software today and will be making announcements of enhancements to the hardware support for some of these features in the next 12 months. We are committed to making more innovations and remaining a leader in HPC, and this requires providing our customers with multiple, high performance programming models.

HPCwire: What is the Data Virtualization Service that comes with the XT5 and XT5m, and why is it important?

Bolding: DVS is an important part of Cray systems. DVS is a flexible virtualization layer that Cray plans use to expand our software functionality and performance . One feature of DVS is that it can allow Cray to project various file systems onto the compute nodes (which are diskless on Cray XT5 systems). This allows Cray systems to act more like a standard commodity cluster if it needs to.  We support IO and storage functionalities that we haven’t in the past. We can share file systems with high-performance file systems on platforms other than clusters. Customers such as NERSC and Oak Ridge are doing very innovative things with file systems and DVS can play a role in providing the flexibility they need.  So, DVS helps us both with compute and IO/storage.

HPCwire: Where is the Cray XT5m product line headed in the future?

Bolding: We are going to continue driving into the midrange market, which is a segment that has excellent growth opportunities for Cray. We want to build a substantial and sustainable market presence there, especially with customers focused on scalability of applications. To grow the XT5m line we need to continue to be competitive on cost while improving price/performance, network scalability,  software features and ISV availability, and we’ll be doing all those things. We’ll also be improving the processor roadmap with new technologies coming into market place. Cray’s innovation, combined with AMD’s strong roadmap is a winning combination for the next few years for the entire XT family of systems. 
HPCwire: What should we look for next?

Bolding: At SC09, we plan to talk more specifically about our future plans for the Cray XT5m product line.

For more information on how the Cray XT5m is making petaflops performance affordable, download the AMD white paper here.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This