Database Vendor Versant Eyes HPC Market

By John West

September 29, 2009

Object database maker Versant has done pretty well in its market niche, with a list of 1,500 customers that includes well-known names like AT&T, Alcatel-Lucent, Ericsson, and British Airways. With 80 people, a market cap of $65 million USD, and revenue last year of $25 million, Versant is a small company by most any measure. But it is in a small industry: while the relational database business is valued around $10 billion a year these days, the object database market is on the order of only a couple hundred million dollars a year.

A niche product for a niche market, Versant’s core technology isn’t needed everywhere, but it is indispensable where it is needed. And the company is hoping to demonstrate that at least some HPC users need it.

Alright, first things first: what’s an object database? Object databases provide persistent storage for, well, objects. Imagine you have a backpack object, and that backpack has a flashlight object and a rope object in it. When you retrieve the backpack object out of the database you get the flashlight and the rope along with it, no extra queries required (well, actually you probably get pointers to those objects, but that’s a detail).

With a relational database, data is stored in rows and columns in (probably many) tables in your database. In our backpack example all backpacks may be listed in a specific table, with each given a unique ID. Another table may store the various camp tools, like ropes and flashlights, that campers may put in backpacks. And yet a third table would put these together, with one row holding the ID for our backpack and the flashlight, and another row holding the ID for our backpack again and the rope.

The mechanics of retrieval offer an important distinction with the relational model: unlike a relational database wherein programmers have to structure a database request (query) in a separate language called SQL, an object database works in the context of a regular programming language such as C++, C or Java. So, for the object database, a programmer calls the backpack object into memory and it comes along with (pointers to) the flashlight and rope objects. But a programmer using a relational database would constructuct a SQL query that first pulled all of the records from the third table to find all the entries that are associated with our backpack’s ID. Then he’d have to construct other queries to look in the camp tool tables to find out what kinds of tools were attached to those IDs.

Despite the apparent added headaches of working with SQL and a relational database, they can be very (very) fast in a wide variety of applications, and have been proven to scale to enormous sizes. They are ubiquitous in nearly every enterprise, and you probably have a bunch in your own HPC center for managing inventory, user tickets, and so on. On the other hand, there are well-documented situations in which object databases are not only easier for a developer to deal with, they are much faster than the alternatives.

“Complexity and concurrency are the two things that we look for in application profiles that would lend themselves well to an object-oriented database,” says David Ingersoll, Versant’s VP of sales (Americas and APAC).

Of course, in traditional high performance technical computing, the choices aren’t between relational and object databases. The choices are between using any kind of database at all and flat files. And Ingersoll acknowledges this is a key obstacle they face in talking with clients, “One challenge is just to get people to realize that they need a database and not just a filesystem.”

But he isn’t coming to HPC empty-handed. When he briefed us about Versant’s potential in the HPC space, Ingersoll talked about examples of traditional HPC users using Versant’s object databases in HPC applications today; particularly, applications with large streaming data. For example, the Air Force Weather Agency uses a Versant database to store real-time satellite imagery that is then fed into computational models for cloud forecasts. Other similar applications include the European Space Agency’s Herschel Space Observatory, where Versant is the mission database, and Verizon, where real-time call data are streamed into a hierarchical set of databases that are used for near real-time fraud detection.

Exxon Mobil is also using Versant’s technology in its reservoir simulation system, EMPower. In its application, results from large-scale numerical simulations are stored in the database and then subjected to analytics routines that answer questions about where to place wells, when and where to inject fluids, and so forth.

In many of their HPC examples, Versant’s users are storing the data in a large database that itself may be hosted on a cluster. Hundreds or thousands of clients then access the database from the compute nodes of other clusters to process the data and answer mission questions. This is a basic level of parallelism supported by Versant, which also offers multi-threaded and parallel queries baked into the database engine along with a dual cache and object-locking for high concurrency support.

Object databases themselves aren’t new: work started on them in the 1980s and spiked in the early 1990s when all the cool kids were drinking the O-O Kool-Aid. As object-oriented languages have become mainstream (including C++, Java, and C#), programmers have struggled with mapping their languages to relational databases because they wanted to work with what they knew: familiar languages and familiar (relational) databases.

And this points to a key challenge in positioning an object database technology for HPC: if you aren’t using an object-oriented language, you aren’t going to see much benefit. “C and FORTRAN don’t lend themselves well [to object databases] because the domain models are very flat, very procedurally oriented, and they’re not going to have a lot of inter-relationships,” says Ingersoll. “At that point, the benefit of our system really falls down.”

Versant is targeting markets and applications where C++ and Java are already in use for intensive computing, or where the practictioners don’t have a vast store of legacy code in their toolboxes already. Areas like bioinformatics offer a lot of potential, not only because of the very modern nature of many of those codes, but also because the domain data model is inherently object-oriented. According to Ingersoll, “We are at that point where people are just coming [into HPC in these domains], so if we can get in front of that wave then that’s a benefit for us.”

Versant is looking to build partnerships as it tries to wriggle into the HPC market. Ingersoll let us know that they are talking to both Penguin Computing and Panasas about working more closely together. The Panasas opportunity seems particularly appropos given the object-based nature of Panasas’ PanFS file system. In fact, according to Ingersoll, Versant is already being used in the financial services industry on a cluster outfitted with Panasas storage.

Versant doesn’t have the object database market to itself, of course. It competes with companies like Objectivity and Intersystems in the object database market, and with Microsoft and Oracle, both of which have a growing interest in the technology. Object databases are an interesting technology, and in twenty years of development Versant has structured a robust solution. But getting databases into HPC, even into the developing segments of our community, will be a tall order. Differentiating object databases from relational databases to HPC people layers another challenge on top of that.

This is a challenge that Ingersoll feels Versant is equal to, “We are getting the market to understand that difference,” he says. “If people are investigating what steps to take today, we have a much better shot at educating them than if they are going to be moving that application from C to C++, and you’re really going to be thoughtful about how you’re modeling the application, then we provide orders of magnitude of performance benefits.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This