NVIDIA Takes GPU Computing to the Next Level

By Michael Feldman

September 29, 2009

GPU Computing 2.0 is upon us. Today at the NVIDIA GPU Technology Conference in San Jose, Calif., company CEO Jen-Hsun Huang unveiled a seriously revamped graphics processor architecture representing the biggest step forward for general-purpose GPU computing since the introduction of CUDA in 2006. The stated goal behind the new architecture is two-fold: to significantly boost GPU computing performance and to expand the application range of the graphics processor.

The new architecture, codenamed “Fermi,” incorporates a number of new features aimed at technical computing, including support for Error Correcting Code (ECC) memory and greatly enhanced double precision (DP) floating point performance. Those additions remove the two major limitations of current GPU architectures for the high performance computing realm, and position the new GPU as a true general-purpose floating point accelerator. Sumit Gupta, senior product manager for NVIDIA’s Tesla GPU Computing Group, characterized the new architecture as “a dramatic step function for GPU computing.” According to him, Fermi will be the basis of all NVIDIA’s GPU offerings (Tesla, GeForce, Quadro, etc.) going forward, although the first products will not hit the streets until sometime next year.

Besides ECC and a big boost in floating point performance, Fermi also more than doubles the number of cores (from 240 to 512), adds L1 and L2 caches, supports the faster GDDR5 memory, and increases memory reach to one terabyte. NVIDIA has also tweaked the hardware to enable greater concurrency and utilization of chip resources. In a nutshell, NVIDIA is making its GPUs a lot more like CPUs, while expanding the floating point capabilities.

First up is the addition of ECC support, a topic we covered earlier this month, (not realizing that NVIDIA was just weeks away from officially announcing it). The impetus behind ECC for GPUs is the same as it was for CPUs: to make sure data integrity is maintained throughout the memory hierarchy so that errant bit flips don’t produce erroneous results. Without this level of reliability, GPU computing would have been relegated to a niche play in supercomputing.

In Fermi, ECC will be supported throughout the architecture. All major internal memories are protected, including the register file and the new L1 and L2 caches. For off-chip DRAM, ECC has been cooked into the memory controller interfaces on the GPU. This entailed a significant engineering effort on NVIDIA’s part, requiring a complete redesign of on-chip memory and the memory controller interface logic. With these enhancements, NVIDIA has achieved the same level of memory protection as a CPU running in a server. Gupta says ECC, which has little application for traditional graphics, will only be enabled for the company’s GPU computing products.

To support this error correction feature, future products will use GDDR5 memory, which is the first graphics memory specification that incorporates error detection. (NVIDIA currently uses GDDR3 in its products, while AMD has already made the switch to GDDR5.) The nice side effect of GDDR5 is that it has more than twice the bandwidth of GDDR3, although the actual performance for products will depend upon the specific memory interface and memory speed. For the Tesla products, it would be reasonable to expect a doubling of memory throughput.

Better yet, since Fermi supports 64-bit addressing, memory reach is now a terabyte. Although it’s not yet practical to place that much DRAM on a GPU card, memory capacities will surely exceed the 4 GB per GPU limit in the current Tesla S1070 and C1060 products. For data-constrained applications, the larger memory capacities will lessen the need for repeated data exchanges between the CPU and the GPU, since more of the data can be kept local to the GPU. This should help boost overall performance for many applications, but especially seismic processing, medical imaging, 3D electromagnetic simulation and image searching.

The addition of L1 and L2 cache is an entirely new feature for GPUs. The caches were added to address the irregular data access problem of many scientific codes. As in CPU caches, the caches are there to reduce data access latency and increase throughput, with the overall goal of keeping the working data as close as possible to the computation. Codes that will see a particular benefit from caching include applications using sparse linear algebra and sparse matrix computations, FEA applications, and ray tracing.

In Fermi, the L1 cache is bundled with shared memory, an internal scratch pad memory that already exists in the current GT200 architecture. But while shared memory is under application control, the L1 cache is managed by the hardware. Fermi provides each 32 core group (or streaming multiprocessor) with 64 KB that is divided between the L1 cache and shared memory. Two configurations are supported: either 48 KB of shared memory and 16 KB L1, or vice versa. The L2 cache is more straightforward. It consists of 768 KB shared across all the GPU cores.

Another big performance boost comes from the pumped up double precision support. Gupta says the GT200 architecture has a 1:8 performance ratio of double precision to single precision, which is why the current Tesla products don’t even manage to top 100 DP peak gigaflops per GPU. The new architecture changes this ratio to 1:2, which represents a more natural arrangement (inasmuch as double precision uses twice the number of bits as single precision). Because NVIDIA has also doubled the total core count, DP performance will enjoy an 8-fold increase. By the time the next Tesla products appear, we should be seeing peak DP floating point performance somewhere between 500 gigaflops to 1 teraflop per GPU.

NVIDIA engineers have also improved floating point accuracy. The previous architecture was IEEE compliant for double precision, but for single precision there were some corner cases where they were not compliant. With Fermi, the latest IEEE 754-2008 floating point standard is now implemented, as well as a fused multiply-add (FMA) instruction to help retain better precision. According to Gupta, that means their new GPUs will be more precise, floating-point-wise, than even x86 CPUs.

The Fermi design adds a number of concurrency features so as to make better use of GPU resources. For example, dual thread scheduling was implemented so that each 32-core streaming multiprocessor can execute two groups of threads simultaneously, in a manner analogous to Intel’s hyper-threading technology for x86 CPUs.

In addition, the GPU’s hardware thread scheduler (HTS) has also been enhanced so that thread context switching is ten times faster than it was before. To take advantage of the quicker switching, the HTS is able to concurrently execute multiple slices of computational work (known in CUDA parlance as “kernels”).

The new capability allows the programmer to offload more of the application to the GPU, since even relatively small pieces of work can be bundled up and shuttled to the GPU en masse without having to worry about the housekeeping and overhead of sending each one separately. And since the HTS takes care of parallelization, more computation can be done in a shorter period of time.

Along these same lines, data transfer has been parallelized. Currently, a GPU calculation can overlap a CPU-GPU data transfer. Fermi provides a second DMA engine so two transfers can be overlapped with a computation. For example, one can simultaneously read in data from the CPU for the next computation while the current computation is executing and the data from the previous result is being written back to the CPU.

On the software side, they’ve made a number of enhancements to support a more fully-featured programming environment. Most importantly, they’re extending the native C CUDA model to include C++. To do this they’ve added hardware support for features like virtual functions and exception handling. By the time the first Fermi products show up in 2010, CUDA will almost certainly have a native C++ compiler capability.

If all of that seems like a lot of smarts for a single chip, it is. NVIDIA says the new architecture will use a 40 nm process technology and encompass 3 billion transistors, which happens to be more than in any of the upcoming Xeon, Opteron, Itanium, or Power7 CPUs. Power consumption for the various Fermi-based products will be on par with the current offerings, but performance per watt will be much improved.

Announcing a new GPU architecture so far out ahead of actual products is a big departure for NVIDIA, and is yet another example of how GPU computing has brought the company closer to the CPU way of doing business. The company is especially interested in bringing in new players, such as manufacturing and big government supercomputing, which have mostly watched on the sidelines during GPU Computing 1.0. NVIDIA also believes Fermi will deepen its GPU computing penetration across all HPC segments — financial services, life sciences, oil & gas, and so on.

What they’re trying to accomplish, says Gupta, is to prepare ISVs and end users so they can start gearing up their software in advance of the actual hardware. From his perspective, “this is part of us becoming an HPC company.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This