Oh, Yeah – The Workstation Is Sexy Again (Just Please Don’t Call It a Personal Supercomputer)

By Addison Snell

October 1, 2009

For over 10 years, from the late 1980s throughout the 1990s, technical workstations were the stunningly sexy starlets of the computing world. Advancements in graphics cards and RISC microprocessors gave engineers and scientists unprecedented performance at their desks, and Silicon Graphics and Sun Microsystems became the twin-sister darlings of Silicon Valley, based on their come-hither designs and, more importantly, the walk-into-a-pole gorgeous applications that ran on them. They were beautiful, but we fell in love with them for the genius they embodied. Covetous engineers passed product catalogs back and forth, leering at the front covers to goggle at screen shots and the back pages to devour the accompanying stats. The resulting market for them was as large as that of the entire adjacent HPC industry.

But by the turn of the century, the megawatt spotlight on the glamorous technical workstation was fading. PCs and so-called “personal” workstations closed the gap in performance while offering lower prices, standard hardware and operating environments, and the resulting ability to run personal productivity applications (like word processing and email) within the same configurations. By the mid 2000s, technical workstations were considered over-the-hill, and not coincidentally, SGI and Sun had lost their bombshell appeal, having turned over the runway to fresh-faced ingenues that stacked up on datasheet measurements but somehow lacked the sassiness and sex appeal we so admired in our fading pin-up models.

Another decade later, the technical workstation is largely forgotten – a fascination from a bygone era still celebrated in the memories of experienced UNIX-heads sprouting long gray hair, as they shake their heads at the times we live in and reminisce about the good old days. To be sure, there have been innovations in graphics and in x86 processors, but the workstation – as it is still sometimes called – isn’t used for work anymore. These personal workstations are glorified PCs that are usually better suited for games than for any serious task. These dolled-up prom queens might be pretty to look at, but we don’t love them, and we never will.

The technical workstations we loved had features that PCs did not. They had multiple 64-bit processors and lots of memory, and they produced graphics effects that made you lose your train of thought every time you looked at the screen. They were dreamboxes. (Sigh.)

We sit back in our reverie, confident that we will never long for another system like that again. And it was with jaded superciliousness that I greeted this summer’s new entry-level HPC products.

First came a new base configuration for the Cray CX-1, the CX-1 LC, which not only lowered the entry price point but also established Windows as a credible technical platform. Then SGI suddenly emerged from its post-merger hangover to launch the SGI Octane III, a product clearly engineered – and named – to make us remember what the company was once capable of. And in a deep bow to the adored queen of the new graphics world, both the CX-1 and the Octane III offer the latest NVIDIA GPUs.

I attended NVIDIA’s GPU Technology Conference in San Jose prepared to see some amazing effects, and I wasn’t disappointed. The fact that they were broadcasting in real time in breathtaking 3D HD stereo was only a baseline jumping-off point for showing off their newest tricks, from photo-realistic ray tracing to an eye-popping augmented reality demo that looked more like magic than technology. Amidst all this eye candy, it is even more amazing that an HPC product would turn everyone’s heads.

Fermi, NVIDIA’s next-generation GPU computing architecture, addresses a punch list of technical shortcomings that had held Tesla back. Fermi offers double-precision performance and ECC memory. It has C++. And NVIDIA also introduced Nexus, an integrated development environment with source-level debugging, immersed in Microsoft Visual Studio. Certainly some hurdles remain (such as overcoming the latency hit inherent in moving a calculation off-chip), but the crowd of paparazzi gathering around GPU computing is growing thicker.

The only blemish on an otherwise awesome launch is that NVIDIA still seems to misunderstand where its HPC opportunities are. The demonstrations and endorsements were substantial, but they tended to meander headily through different product classes and application categories. The target markets stated in NVIDIA’s analyst presentation don’t line up to the benchmarks the company is reporting or the ISVs it is targeting. And NVIDIA’s stated total addressable market figure for 2010 – over $1.1 billion in GPU sales (not system sales, but GPU sales) for HPC applications in finance, energy, academia, government, and other supercomputing – is so ridiculous that it can only be the result of intentional self-delusion.

At the heart of the problem is NVIDIA’s oxymoronic designation for its Tesla line, the “personal supercomputer.” This term seems to go around HPC marketing teams every ten years like a new strain of positioning flu: the Try1Buy1 virus. In 1988 Apollo infected IBM with the concept, and in 1998 Apple introduced a new mutation with the Power Mac G4. Apple must have then sneezed on – guess who – NVIDIA, which launched its own personal supercomputer in 1999 to compete.

Apparently this resilient piece of message coding has a 10-year incubation cycle. NVIDIA has introduced a second-generation personal supercomputer to market, and both SGI and Cray have caught the new product class. Maybe 10 years is how long it takes to forget why it didn’t become an epidemic of success the last time. Those reasons are these, for use now and in all future census years:

  1. People who are looking for a supercomputer want a supercomputer, not something that fits under a chair.
     
  2. People who are looking for an HPC adoption platform don’t think of themselves as supercomputing users. In fact, half the time they don’t even think of themselves as HPC users.
     
  3. If you finally manage to break through the confusion and attract a potential buyer, you encounter an automatic purchasing roadblock. (Accounting: “No, Jim is NOT authorized to buy his own personal supercomputer!”)

To call any of these products a personal supercomputer is to forget how we might have thought of these products back in the days when desktop and deskside systems quickened our pulses. Oh my, the technical workstation is back, and there are reasons to fall in love.

In Cray’s, SGI’s, and NVIDIA’s entry-level HPC products, we have the ability to bundle best-of-class, whiz-bang graphics environments together with HPC clusters that pack enough smarts to do a wide variety of scientific, engineering and analytical tasks. Notwithstanding the excellent endorsement from Oak Ridge National Labs, the knockout opportunity is in the integration of HPC workflow from desktop to low-end cluster.

“It’s not a personal supercomputer. It is a workstation,” says Jean-Marc Talbot, CEO of CAPS Entreprise, whose HMPP Workbench compiles C and Fortran code for CUDA environments. “[NVIDIA] will have to move aggressively to convince the ISV community, and it’s the same for Cray and for SGI. That’s where the opportunity is. We need to look at what we can do to speed ISV adoption.”

If my earlier conversations with ISVs in the HPC community are any indication, getting their interest won’t be a great challenge. Many of them will look to platforms like Tesla, Octane III, and CX-1 as integrated systems that provide a smooth introduction to their products.

Insights like this have already guided Cray to soften up on the “personal supercomputing” talk and to shift the conversation to how Cray is putting the “work” back into workstation. SGI calls it a personal supercomputer, but Octane was an iconic workstation product, and clearly this heritage was on someone’s mind. Meanwhile NVIDIA is meeting one technical challenge after another, but the company hasn’t put its finger on why its messaging hasn’t thoroughly resonated yet with commercial production environments.

I do know why. I still remember the sexy allure and the mind-blowing effects. I remember the smug pride and the jealousy that seethed among the haves and the have-nots. I remember being able to tell who the cool engineers were by the systems they proudly displayed in their cubicles. I remember the smoldering lust, the burning desire, the primal need to possess such an elegant package of intelligence and sex appeal.

I know what we’ve got here. The technical workstation is back. I’m in love.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This