DOE Labs to Build Science Clouds

By Michael Feldman

October 13, 2009

Like many organizations that rely on industrial-strength datacenters, the US Department of Energy (DOE) would like to know if cloud computing can make its life easier. To answer that question, the DOE is launching a $32 million program to study how scientific codes can make use of cloud technology. Called Magellan, the program will be funded by the American Recovery and Reinvestment Act (ARRA), with the money to be split equally between the the two DOE centers that will be conducting the work: the Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

One of the major questions the study hopes to answer is how well the DOE’s mid-range scientific workloads match up with various cloud architectures and how those architectures could be optimized for HPC applications. Today most public clouds lack the network performance, as well as CPU and memory capacities to handle many HPC codes. The software environment in public clouds also can be at odds with HPC, since little effort has been made to optimize computational performance at the application level. Purpose-built HPC clouds may be the answer, and much of the Magellan effort will be focused on developing these private “science clouds.”

The bigger question, though, is to find out if the cloud model in general is applicable to high performance computing applications used at DOE labs and can offer a cost-effective and flexible approach for researchers. According to ALCF director Pete Beckman, that means getting the best science for the dollar. In a cloud architecture, the virtualization of resources usually translates into better utilization of hardware. In the HPC realm though, virtualization can be a performance killer and utilization is often not the big problem it is in commercial datacenters where hardware is typically undersubscribed. Perhaps of greater interest for HPC users is the ability to fast-track application deployment by taking advantage of the cloud’s ability to encapsulate complete software environments.

“There are a lot users who spend time developing there own software inside their own software stack,” says Beckman. “Getting those running on traditional supercomputers can be quite challenging. In the cloud model, sometimes these people find it easier to bring their software stack with them. That can broaden the community.”

The entire range of DOE scientific codes will be looked at, including energy research, climate modeling, bioinformatics, physics codes, applied math, and computer science research. But the focus will be on those codes that are typically run on HPC capacity clusters, which represent much of the computing infrastructure at DOE labs today. In general, codes that require capability supercomputers such as the Cray XT and the IBM Blue Gene are not considered candidates for cloud environments. This is mainly because large-scale supercomputing apps tend to be tightly coupled, relying on high speed inter-node communication and a non-virtualized software stack for maximum performance.

Most of the program’s $32 million will, in fact, be spent on new cluster systems, which will form the testbed for Magellan. According to NERSC director Kathy Yelick, the cluster hardware will be fairly generic HPC systems, based on Intel Nehalem CPUs and InfiniBand technology. Total compute performance across both sites will be on the order of 100 teraflops. Yelick says there will also be a storage cloud, with a little over a petabyte of capacity. In addition, flash memory technology will be used to optimize performance for data-intensive applications. The NERSC and ALCF clusters will be linked via ESnet, the DOE’s cutting-edge 100 Gbps network. ESnet was also a recipient of ARRA funding, and will be used to facilitate super-speed data transfers between the two sites.

One of the challenges in building a private cloud today is the lack of software standards. However, the Magellan work will employ some of the more popular frameworks that have emerged from the cloud community. Argonne, for instance, will experiment with the Eucalyptus toolkit, an open-source package that is compatible with Amazon Web Services API. The idea is to be able to build a private cloud with the same interface as Amazon EC2.

Apache’s Hadoop and Google’s MapReduce, two related software frameworks that deal with large distributed datasets, will also be evaluated. Like Eucalyptus, Hadoop and MapReduce grew up outside of the HPC world, so currently there’s not much support for them at traditional supercomputing centers. But the notion of large distributed data sets is a feature of many data-intensive scientific codes and is a natural fit for cloud-style computing.

The other aspect of the Magellan effort has to do with experimentation of commercial cloud offerings, such as those from Amazon, Google, and Microsoft. Public clouds, in particular, are attracting a lot of interest due to their ability to offer virtually infinite capacity and elasticity. (Private clouds, because of their smaller size, tend to be seen as fixed resources.) Just as important to the DOE, a public cloud has the allure of offloading the development and maintainence of local infrastructure to someone else.

“Will it be more cost effective for a commercial entity to run a cloud, and presumably make a profit on it, than for the DOE to run their own cloud?” asks Yelick. “That is going to be one of the questions most challenging to answer.”

Some DOE researchers are already giving public clouds a whirl. Argonne’s Jared Wilkening recently tested the feasibility of employing Amazon EC2 to run a metagenomics application (PDF). The BLAST-based code is a nice fit for cloud computing because there is little internal synchronization, therefore it doesn’t rely on high performance interconnects. Nevertheless, the study’s conclusion was that Amazon is significantly more expensive than locally-owned clusters, due mainly to EC2’s inferior CPU hardware and the premium cost associated with on-demand access. Of course, given increased demand for compute-intensive workloads, that could change. Wilkening’s paper was published in Cluster 2009, and slides (PDF) are available on the conference Web site.

The Magellan program is slated to run for two years, with the initial clusters expected to be installed sometime in the next few months. At NERSC, Yelick says the hardware could arrive as early as November, and become operational in December or January. Meanwhile at Argonne, Beckman is already running into researchers who can’t wait to host their codes on the Magellan cloud. “They’re lined up,” he says. “They keep coming down to my office asking when it will be here and how soon they can log in.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This