DOE Labs to Build Science Clouds

By Michael Feldman

October 13, 2009

Like many organizations that rely on industrial-strength datacenters, the US Department of Energy (DOE) would like to know if cloud computing can make its life easier. To answer that question, the DOE is launching a $32 million program to study how scientific codes can make use of cloud technology. Called Magellan, the program will be funded by the American Recovery and Reinvestment Act (ARRA), with the money to be split equally between the the two DOE centers that will be conducting the work: the Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

One of the major questions the study hopes to answer is how well the DOE’s mid-range scientific workloads match up with various cloud architectures and how those architectures could be optimized for HPC applications. Today most public clouds lack the network performance, as well as CPU and memory capacities to handle many HPC codes. The software environment in public clouds also can be at odds with HPC, since little effort has been made to optimize computational performance at the application level. Purpose-built HPC clouds may be the answer, and much of the Magellan effort will be focused on developing these private “science clouds.”

The bigger question, though, is to find out if the cloud model in general is applicable to high performance computing applications used at DOE labs and can offer a cost-effective and flexible approach for researchers. According to ALCF director Pete Beckman, that means getting the best science for the dollar. In a cloud architecture, the virtualization of resources usually translates into better utilization of hardware. In the HPC realm though, virtualization can be a performance killer and utilization is often not the big problem it is in commercial datacenters where hardware is typically undersubscribed. Perhaps of greater interest for HPC users is the ability to fast-track application deployment by taking advantage of the cloud’s ability to encapsulate complete software environments.

“There are a lot users who spend time developing there own software inside their own software stack,” says Beckman. “Getting those running on traditional supercomputers can be quite challenging. In the cloud model, sometimes these people find it easier to bring their software stack with them. That can broaden the community.”

The entire range of DOE scientific codes will be looked at, including energy research, climate modeling, bioinformatics, physics codes, applied math, and computer science research. But the focus will be on those codes that are typically run on HPC capacity clusters, which represent much of the computing infrastructure at DOE labs today. In general, codes that require capability supercomputers such as the Cray XT and the IBM Blue Gene are not considered candidates for cloud environments. This is mainly because large-scale supercomputing apps tend to be tightly coupled, relying on high speed inter-node communication and a non-virtualized software stack for maximum performance.

Most of the program’s $32 million will, in fact, be spent on new cluster systems, which will form the testbed for Magellan. According to NERSC director Kathy Yelick, the cluster hardware will be fairly generic HPC systems, based on Intel Nehalem CPUs and InfiniBand technology. Total compute performance across both sites will be on the order of 100 teraflops. Yelick says there will also be a storage cloud, with a little over a petabyte of capacity. In addition, flash memory technology will be used to optimize performance for data-intensive applications. The NERSC and ALCF clusters will be linked via ESnet, the DOE’s cutting-edge 100 Gbps network. ESnet was also a recipient of ARRA funding, and will be used to facilitate super-speed data transfers between the two sites.

One of the challenges in building a private cloud today is the lack of software standards. However, the Magellan work will employ some of the more popular frameworks that have emerged from the cloud community. Argonne, for instance, will experiment with the Eucalyptus toolkit, an open-source package that is compatible with Amazon Web Services API. The idea is to be able to build a private cloud with the same interface as Amazon EC2.

Apache’s Hadoop and Google’s MapReduce, two related software frameworks that deal with large distributed datasets, will also be evaluated. Like Eucalyptus, Hadoop and MapReduce grew up outside of the HPC world, so currently there’s not much support for them at traditional supercomputing centers. But the notion of large distributed data sets is a feature of many data-intensive scientific codes and is a natural fit for cloud-style computing.

The other aspect of the Magellan effort has to do with experimentation of commercial cloud offerings, such as those from Amazon, Google, and Microsoft. Public clouds, in particular, are attracting a lot of interest due to their ability to offer virtually infinite capacity and elasticity. (Private clouds, because of their smaller size, tend to be seen as fixed resources.) Just as important to the DOE, a public cloud has the allure of offloading the development and maintainence of local infrastructure to someone else.

“Will it be more cost effective for a commercial entity to run a cloud, and presumably make a profit on it, than for the DOE to run their own cloud?” asks Yelick. “That is going to be one of the questions most challenging to answer.”

Some DOE researchers are already giving public clouds a whirl. Argonne’s Jared Wilkening recently tested the feasibility of employing Amazon EC2 to run a metagenomics application (PDF). The BLAST-based code is a nice fit for cloud computing because there is little internal synchronization, therefore it doesn’t rely on high performance interconnects. Nevertheless, the study’s conclusion was that Amazon is significantly more expensive than locally-owned clusters, due mainly to EC2’s inferior CPU hardware and the premium cost associated with on-demand access. Of course, given increased demand for compute-intensive workloads, that could change. Wilkening’s paper was published in Cluster 2009, and slides (PDF) are available on the conference Web site.

The Magellan program is slated to run for two years, with the initial clusters expected to be installed sometime in the next few months. At NERSC, Yelick says the hardware could arrive as early as November, and become operational in December or January. Meanwhile at Argonne, Beckman is already running into researchers who can’t wait to host their codes on the Magellan cloud. “They’re lined up,” he says. “They keep coming down to my office asking when it will be here and how soon they can log in.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This