In Fermi’s Wake, a Place for FPGAs?

By Michael Feldman

October 15, 2009

Thanks to the meteoric rise of GPGPU, HPC server vendors are busily trying to figure out how to stuff graphics chips into their systems. NVIDIA’s unveiling of the next-generation Fermi GPU is only going to encourage the GPU computing love-fest.

So how many GPUs can you practically fit in a server? At this point, the answer seems to be eight. Earlier this week Colfax International launched the CXT8000, a 4U server containing eight NVIDIA C1060 Tesla cards. The eight GPUs are paired with eight CPU cores, in the form of two Xeon quad-core processors. The 4U server offers 8 teraflops of single precision floating point performance. All this for a paltry $16,000.

The eight-GPU setup has actually been tried before. There is (or was) an eight-GPU server based on AMD FireStream hardware, which made a brief appearance last year. At SC08 in Austin, Aprius was showcasing its CA8000, a 4U server containing 8 FireStream 9270 cards. The system had a peak rating of 9.6 single precision teraflops. Aprius’s intention was to begin sampling the CA8000 in the first quarter of 2009, although the last time I checked the company’s Web site, there was no further mention of it.

Next year at this time we’re likely to be seeing Fermi GPU-based servers with a lot more power. An eight-GPU Fermi box would probably deliver something in the neighborhood of 15 teraflops single precision and half of that in double precision. Add to that all the other enhancements Fermi brings to the GPGPU party, and you have a whole new wave of cheap FLOPS entering the market at commodity-like prices,

So where does that leave other accelerators, like for example FPGAs? Well, for the near term, FPGA enthusiasts are going to have to fight harder than ever for a spot in the HPC ecosystem. (In truth, it’s been an uphill battle for FPGAs since they first entered the HPC arena.) NVIDIA’s CUDA software ecosystem continues to expand and mature, and with OpenCL on the horizon, we’ll soon have a hardware-neutral GPU computing software environment. There is no equivalent in the FPGA world.

The good news is that FPGAs still offer some unique features that can’t be matched by traditional processors, GPU or otherwise. By their nature, FPGAs are reconfigurable, so the hardware can be optimized for different applications. And since FPGA products are now available as QuickPath or HyperTransport peers, they can share the main bus with the CPU, which greatly speeds up data communications.

FPGAs also are particularly suited for certain classes of algorithms like string matching, cryptography, and fast Fourier transforms. Bioinformatics employs a number of codes that are especially suitable for FPGAs. For example, the Smith-Waterman algorithm, which is used for protein and gene sequence alignment, is basically a string-matching operation that requires a lot of computational power.

There are GPU-based implementations of Smith-Waterman. The most impressive example that I’ve come across shows a 2x to 30x speedup compared to an x86 optimized (read SSE-enabled) implementation. The GPU speedup reflects decent acceleration for this algorithm, but at the low end, it’s nothing to write home about. This study is a couple of years old, so they were using the older NVIDIA G80 architecture and presumably the older x86 architecture as well. It would be interesting to see results on current generation processors.

As expected, FPGAs can offer more substantial acceleration for Smith-Waterman. One study demonstrates speedups of 100x using Xilinx Virtex-4 hardware matched against a 2.2GHz Opteron. On a practical level, that means searches that used to take over three months can now be run in a single day.

A recent application note I received from CHREC, the NSF Center for High-Performance Reconfigurable Computing, showed its new Novo-G supercomputer with even more impressive results for Smith-Waterman. Novo-G is a cluster of 24 Linux servers, each housing four Altera Stratix-III E260 FPGAs. According to the CHREC study, a four-FPGA node ran 2,665 times faster than a single 2.4GHz Opteron core. Doing a little math (and discounting multicore overhead), that translates to a 166X speedup, matching a single FPGA against a quad-core Opteron. Essentially that means Novo-G can match TACC’s half-petaflop Ranger supercomputer on this particular application. Not bad.

Despite that kind of success, I still think FPGAs have a tough road ahead in HPC. FPGA hardware is advancing as rapidly as any other processor technology, but the software ecosystem is still small, and no single solution like CUDA has emerged as a rallying point for developers. As the GPU computing ecosystem starts to expand in earnest over the next few years, it will be interesting to see how the FPGA crowd reacts.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This