In Fermi’s Wake, a Place for FPGAs?

By Michael Feldman

October 15, 2009

Thanks to the meteoric rise of GPGPU, HPC server vendors are busily trying to figure out how to stuff graphics chips into their systems. NVIDIA’s unveiling of the next-generation Fermi GPU is only going to encourage the GPU computing love-fest.

So how many GPUs can you practically fit in a server? At this point, the answer seems to be eight. Earlier this week Colfax International launched the CXT8000, a 4U server containing eight NVIDIA C1060 Tesla cards. The eight GPUs are paired with eight CPU cores, in the form of two Xeon quad-core processors. The 4U server offers 8 teraflops of single precision floating point performance. All this for a paltry $16,000.

The eight-GPU setup has actually been tried before. There is (or was) an eight-GPU server based on AMD FireStream hardware, which made a brief appearance last year. At SC08 in Austin, Aprius was showcasing its CA8000, a 4U server containing 8 FireStream 9270 cards. The system had a peak rating of 9.6 single precision teraflops. Aprius’s intention was to begin sampling the CA8000 in the first quarter of 2009, although the last time I checked the company’s Web site, there was no further mention of it.

Next year at this time we’re likely to be seeing Fermi GPU-based servers with a lot more power. An eight-GPU Fermi box would probably deliver something in the neighborhood of 15 teraflops single precision and half of that in double precision. Add to that all the other enhancements Fermi brings to the GPGPU party, and you have a whole new wave of cheap FLOPS entering the market at commodity-like prices,

So where does that leave other accelerators, like for example FPGAs? Well, for the near term, FPGA enthusiasts are going to have to fight harder than ever for a spot in the HPC ecosystem. (In truth, it’s been an uphill battle for FPGAs since they first entered the HPC arena.) NVIDIA’s CUDA software ecosystem continues to expand and mature, and with OpenCL on the horizon, we’ll soon have a hardware-neutral GPU computing software environment. There is no equivalent in the FPGA world.

The good news is that FPGAs still offer some unique features that can’t be matched by traditional processors, GPU or otherwise. By their nature, FPGAs are reconfigurable, so the hardware can be optimized for different applications. And since FPGA products are now available as QuickPath or HyperTransport peers, they can share the main bus with the CPU, which greatly speeds up data communications.

FPGAs also are particularly suited for certain classes of algorithms like string matching, cryptography, and fast Fourier transforms. Bioinformatics employs a number of codes that are especially suitable for FPGAs. For example, the Smith-Waterman algorithm, which is used for protein and gene sequence alignment, is basically a string-matching operation that requires a lot of computational power.

There are GPU-based implementations of Smith-Waterman. The most impressive example that I’ve come across shows a 2x to 30x speedup compared to an x86 optimized (read SSE-enabled) implementation. The GPU speedup reflects decent acceleration for this algorithm, but at the low end, it’s nothing to write home about. This study is a couple of years old, so they were using the older NVIDIA G80 architecture and presumably the older x86 architecture as well. It would be interesting to see results on current generation processors.

As expected, FPGAs can offer more substantial acceleration for Smith-Waterman. One study demonstrates speedups of 100x using Xilinx Virtex-4 hardware matched against a 2.2GHz Opteron. On a practical level, that means searches that used to take over three months can now be run in a single day.

A recent application note I received from CHREC, the NSF Center for High-Performance Reconfigurable Computing, showed its new Novo-G supercomputer with even more impressive results for Smith-Waterman. Novo-G is a cluster of 24 Linux servers, each housing four Altera Stratix-III E260 FPGAs. According to the CHREC study, a four-FPGA node ran 2,665 times faster than a single 2.4GHz Opteron core. Doing a little math (and discounting multicore overhead), that translates to a 166X speedup, matching a single FPGA against a quad-core Opteron. Essentially that means Novo-G can match TACC’s half-petaflop Ranger supercomputer on this particular application. Not bad.

Despite that kind of success, I still think FPGAs have a tough road ahead in HPC. FPGA hardware is advancing as rapidly as any other processor technology, but the software ecosystem is still small, and no single solution like CUDA has emerged as a rallying point for developers. As the GPU computing ecosystem starts to expand in earnest over the next few years, it will be interesting to see how the FPGA crowd reacts.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This