In Fermi’s Wake, a Place for FPGAs?

By Michael Feldman

October 15, 2009

Thanks to the meteoric rise of GPGPU, HPC server vendors are busily trying to figure out how to stuff graphics chips into their systems. NVIDIA’s unveiling of the next-generation Fermi GPU is only going to encourage the GPU computing love-fest.

So how many GPUs can you practically fit in a server? At this point, the answer seems to be eight. Earlier this week Colfax International launched the CXT8000, a 4U server containing eight NVIDIA C1060 Tesla cards. The eight GPUs are paired with eight CPU cores, in the form of two Xeon quad-core processors. The 4U server offers 8 teraflops of single precision floating point performance. All this for a paltry $16,000.

The eight-GPU setup has actually been tried before. There is (or was) an eight-GPU server based on AMD FireStream hardware, which made a brief appearance last year. At SC08 in Austin, Aprius was showcasing its CA8000, a 4U server containing 8 FireStream 9270 cards. The system had a peak rating of 9.6 single precision teraflops. Aprius’s intention was to begin sampling the CA8000 in the first quarter of 2009, although the last time I checked the company’s Web site, there was no further mention of it.

Next year at this time we’re likely to be seeing Fermi GPU-based servers with a lot more power. An eight-GPU Fermi box would probably deliver something in the neighborhood of 15 teraflops single precision and half of that in double precision. Add to that all the other enhancements Fermi brings to the GPGPU party, and you have a whole new wave of cheap FLOPS entering the market at commodity-like prices,

So where does that leave other accelerators, like for example FPGAs? Well, for the near term, FPGA enthusiasts are going to have to fight harder than ever for a spot in the HPC ecosystem. (In truth, it’s been an uphill battle for FPGAs since they first entered the HPC arena.) NVIDIA’s CUDA software ecosystem continues to expand and mature, and with OpenCL on the horizon, we’ll soon have a hardware-neutral GPU computing software environment. There is no equivalent in the FPGA world.

The good news is that FPGAs still offer some unique features that can’t be matched by traditional processors, GPU or otherwise. By their nature, FPGAs are reconfigurable, so the hardware can be optimized for different applications. And since FPGA products are now available as QuickPath or HyperTransport peers, they can share the main bus with the CPU, which greatly speeds up data communications.

FPGAs also are particularly suited for certain classes of algorithms like string matching, cryptography, and fast Fourier transforms. Bioinformatics employs a number of codes that are especially suitable for FPGAs. For example, the Smith-Waterman algorithm, which is used for protein and gene sequence alignment, is basically a string-matching operation that requires a lot of computational power.

There are GPU-based implementations of Smith-Waterman. The most impressive example that I’ve come across shows a 2x to 30x speedup compared to an x86 optimized (read SSE-enabled) implementation. The GPU speedup reflects decent acceleration for this algorithm, but at the low end, it’s nothing to write home about. This study is a couple of years old, so they were using the older NVIDIA G80 architecture and presumably the older x86 architecture as well. It would be interesting to see results on current generation processors.

As expected, FPGAs can offer more substantial acceleration for Smith-Waterman. One study demonstrates speedups of 100x using Xilinx Virtex-4 hardware matched against a 2.2GHz Opteron. On a practical level, that means searches that used to take over three months can now be run in a single day.

A recent application note I received from CHREC, the NSF Center for High-Performance Reconfigurable Computing, showed its new Novo-G supercomputer with even more impressive results for Smith-Waterman. Novo-G is a cluster of 24 Linux servers, each housing four Altera Stratix-III E260 FPGAs. According to the CHREC study, a four-FPGA node ran 2,665 times faster than a single 2.4GHz Opteron core. Doing a little math (and discounting multicore overhead), that translates to a 166X speedup, matching a single FPGA against a quad-core Opteron. Essentially that means Novo-G can match TACC’s half-petaflop Ranger supercomputer on this particular application. Not bad.

Despite that kind of success, I still think FPGAs have a tough road ahead in HPC. FPGA hardware is advancing as rapidly as any other processor technology, but the software ecosystem is still small, and no single solution like CUDA has emerged as a rallying point for developers. As the GPU computing ecosystem starts to expand in earnest over the next few years, it will be interesting to see how the FPGA crowd reacts.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This