In Fermi’s Wake, a Place for FPGAs?

By Michael Feldman

October 15, 2009

Thanks to the meteoric rise of GPGPU, HPC server vendors are busily trying to figure out how to stuff graphics chips into their systems. NVIDIA’s unveiling of the next-generation Fermi GPU is only going to encourage the GPU computing love-fest.

So how many GPUs can you practically fit in a server? At this point, the answer seems to be eight. Earlier this week Colfax International launched the CXT8000, a 4U server containing eight NVIDIA C1060 Tesla cards. The eight GPUs are paired with eight CPU cores, in the form of two Xeon quad-core processors. The 4U server offers 8 teraflops of single precision floating point performance. All this for a paltry $16,000.

The eight-GPU setup has actually been tried before. There is (or was) an eight-GPU server based on AMD FireStream hardware, which made a brief appearance last year. At SC08 in Austin, Aprius was showcasing its CA8000, a 4U server containing 8 FireStream 9270 cards. The system had a peak rating of 9.6 single precision teraflops. Aprius’s intention was to begin sampling the CA8000 in the first quarter of 2009, although the last time I checked the company’s Web site, there was no further mention of it.

Next year at this time we’re likely to be seeing Fermi GPU-based servers with a lot more power. An eight-GPU Fermi box would probably deliver something in the neighborhood of 15 teraflops single precision and half of that in double precision. Add to that all the other enhancements Fermi brings to the GPGPU party, and you have a whole new wave of cheap FLOPS entering the market at commodity-like prices,

So where does that leave other accelerators, like for example FPGAs? Well, for the near term, FPGA enthusiasts are going to have to fight harder than ever for a spot in the HPC ecosystem. (In truth, it’s been an uphill battle for FPGAs since they first entered the HPC arena.) NVIDIA’s CUDA software ecosystem continues to expand and mature, and with OpenCL on the horizon, we’ll soon have a hardware-neutral GPU computing software environment. There is no equivalent in the FPGA world.

The good news is that FPGAs still offer some unique features that can’t be matched by traditional processors, GPU or otherwise. By their nature, FPGAs are reconfigurable, so the hardware can be optimized for different applications. And since FPGA products are now available as QuickPath or HyperTransport peers, they can share the main bus with the CPU, which greatly speeds up data communications.

FPGAs also are particularly suited for certain classes of algorithms like string matching, cryptography, and fast Fourier transforms. Bioinformatics employs a number of codes that are especially suitable for FPGAs. For example, the Smith-Waterman algorithm, which is used for protein and gene sequence alignment, is basically a string-matching operation that requires a lot of computational power.

There are GPU-based implementations of Smith-Waterman. The most impressive example that I’ve come across shows a 2x to 30x speedup compared to an x86 optimized (read SSE-enabled) implementation. The GPU speedup reflects decent acceleration for this algorithm, but at the low end, it’s nothing to write home about. This study is a couple of years old, so they were using the older NVIDIA G80 architecture and presumably the older x86 architecture as well. It would be interesting to see results on current generation processors.

As expected, FPGAs can offer more substantial acceleration for Smith-Waterman. One study demonstrates speedups of 100x using Xilinx Virtex-4 hardware matched against a 2.2GHz Opteron. On a practical level, that means searches that used to take over three months can now be run in a single day.

A recent application note I received from CHREC, the NSF Center for High-Performance Reconfigurable Computing, showed its new Novo-G supercomputer with even more impressive results for Smith-Waterman. Novo-G is a cluster of 24 Linux servers, each housing four Altera Stratix-III E260 FPGAs. According to the CHREC study, a four-FPGA node ran 2,665 times faster than a single 2.4GHz Opteron core. Doing a little math (and discounting multicore overhead), that translates to a 166X speedup, matching a single FPGA against a quad-core Opteron. Essentially that means Novo-G can match TACC’s half-petaflop Ranger supercomputer on this particular application. Not bad.

Despite that kind of success, I still think FPGAs have a tough road ahead in HPC. FPGA hardware is advancing as rapidly as any other processor technology, but the software ecosystem is still small, and no single solution like CUDA has emerged as a rallying point for developers. As the GPU computing ecosystem starts to expand in earnest over the next few years, it will be interesting to see how the FPGA crowd reacts.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This