NVIDIA Pitches GPU Computing in the Cloud

By Michael Feldman

October 21, 2009

At the Web 2.0 Summit in San Francisco this week, NVIDIA announced a GPU-powered 3D Web platform. Called the NVIDIA RealityServer, it consists of Tesla GPUs, rendering software and a Web service environment, all integrated into a platform designed to deliver photorealistic image streams via a cloud computing model. The new offering is yet another example of how the company intends to push its high-end GPUs into CPU territory.

The basic idea behind RealityServer is to do all the heavy computation lifting of image rendering on the server side, such that photorealistic 3D content can be delivered interactively across the Web. That means mass-market devices from smart phones to desktops and everything in between can be used to do high-end imaging. Applications include architectural design, product design, manufacturing and apparel styling, as well as HPC visual applications in such areas as oil and gas, medical diagnostics, and scientific research. As a result, potential users span the entire population: consumers, artists, product designers, doctors, architects, engineers, and scientists.

The big emphasis here is on photorealistic images. Generating such content is extremely compute intensive since the software must calculate the effects of light bouncing off the objects in a scene. Rendering a single photorealistic frame for a complex image can take a whole day on a typical CPU-based workstation. So unless one happens to own a deskside HPC machine (which may themselves contain NVIDIA GPUs), client-side processing is usually not able to deliver this interactive user experience.

Significantly, NVIDIA is not yet claiming this can be used to deliver photorealistic animation. For that to happen, presumably gamers and graphics animators will have to wait until GPU horsepower increases to the point where real-time photorealistic animation is practical. Theoretically, someone could build a big enough GPU cluster to do this today (or with Fermi GPUs next year), but computing 60 photorealistic frames per second is not likely to be economically feasible in the near term.

The critical 3D software component of RealityServer is iray, a photorealistic rendering technology developed by mental images, an NVIDIA subsidiary the company bought two years ago. The iray software is essentially a GPU-accelerated rendering mode of its flagship mental ray product. The iray software uses global illumination, which requires a lot more computational horsepower than garden variety ray-tracing (which usually only approximates global illumination or just uses direct illumination). True global illumination, however, blends the effect of direct and indirect light and will produce a much more refined image, almost indistinguishable from a photograph. Rolf Herken, founder, CEO and CTO of mental images, characterized iray as “the first physically correct renderer.”

Photorealistic image

In this case, the quality of the image is dependent on the fidelity of the input data rather than the algorithm. The feature that makes this practical in a cloud environment is iray’s ability to scale across many GPUs. According to the iray FAQ (PDF), the software scales “completely linearly on a local system, almost linearly on RealityServer across multiple machines.”

The RealityServer software itself encompasses the iray renderer as well as the rest of the software stack that turns 3D imaging into a Web service. OpenGL is also supported for situations where iray computation would be too slow to deliver interactive rendering. As one might suspect, RealityServer includes support for standard CAD and digital content creation formats and can run under both Linux or Windows.

The hardware environment for RealityServer is NVIDIA’s new Tesla RS platform, which comes in medium (8-31 GPUs), large (32-99 GPUs), and extra-large (100-plus GPUs) configurations. The Tesla device was presumably used since the high-end graphics chip and the larger memory capacity is specifically aimed at big GPU computing workloads. The smallest RS configuration is aimed at workgroups (for example, a group of collaborating architects), while the largest configuration is designed for thousands of concurrent users. This is only a general guideline, since some applications, like medical or oil & gas imaging, require multiple GPUs per user, while others, such as online entertainment, can support many users with a just single GPU.

NVIDIA is pointing interested parties who want to build RealityServer GPU server infrastructure to its OEM partners (which include HPC vendors Colfax, Appro, and Penguin Computing), but is not indicating which manufacturers are actually offering these configurations today. The RealityServer software itself will be available on Nov. 30, when a developer edition will be made available free of charge, including the right to deploy non-commercial applications. No mention was made of licensing RealityServer or iray for commercial applications.

As far as who will end up offering RealityServer infrastructure, NVIDIA is hoping public cloud providers, like for example Amazon, will be interested in adding this capability into their offerings. Private GPU clouds are also on the table, and frankly, are the more likely scenario in the short term, since I’m guessing a critical mass of RealityServer applications will need to be developed for the big cloud providers to be interested. In the NVIDIA press release, there were a handful of comments from some initial RealityServer customers, including mydeco.com, SceneCaster, and Wichita State University’s Virtual Reality Center at the National Institute for Aviation Research. Undoubtably, there is more low-hanging fruit out there waiting to be picked.

The ease of developing these RealityServer applications will likely portend the success of the business in general. Users, of course, may be squeamish about locking their software to a specific vendor’s platform, but with no competing offering currently on the market, the choice may become simple. And if NVIDIA supports RealityServer efforts in the same manner it is using to develop the CUDA ecosystem, the company may indeed have a winning model for GPU computing in the cloud.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This