Limiting Latencies in the Cloud

By Dr. Casimer DeCusatis

October 22, 2009

One of the primary reasons for the phenomenal interest today in cloud computing is that it abstracts technological complexity away from the end user. Innovative high-bandwidth, low-latency services are accessed from the cloud, without much worry about the hardware or software resources deployed locally.

For the operators of networks that underlie cloud computing, of course, the technological considerations are not small. Whether engineering a private cloud to be operated by an enterprise information technology (IT) staff for that enterprise’s users or a public cloud to be operated by a provider of managed services to business customers, one of the key decisions to be made is how to interconnect servers and storage within and among datacenters and create virtual machines.

There are a number of technology options available to IT managers and service planners who need high-bandwidth, low-latency transport for virtualized sharing of resources across the cloud. Interconnect latencies have been generally recognized as a limiting factor for high-performance computing applications in and among cloud centers, but a variety of protocol innovations have appeared in the marketplace to clear this hurdle.

Behind the Fervor

The traditional datacenter compute model has been characterized by lightly utilized x86-architecture servers running one bare-metal operating system or multiple operating systems via a hypervisor. Lower-bandwidth links among server resources have been sufficient, given the low number of virtual machines in use.

Today, industry is moving full-bore toward a more dynamic model. In cloud computing, servers are more highly utilized and clustered to support many virtual machines. Cloud implementations — in which software-based services are decoupled from particular servers and other hardware resources — vary widely.

Internet search engines and social media sites have leveraged this cloud computing approach for some time. The trend has extended to traditional business services and applications, as evidenced with the appearance of Google Docs and Salesforce.com, for example. Public desktop cloud service has emerged, in which end users access applications and data from network-attached PCs or other devices. Even high-performance computing is likely to leverage the cloud.

The business benefits are considerable. Reductions are to be realized in both capital and operating expenditures (CAPEX and OPEX). Higher utilization of mid-range servers, storage and converged network fabrics results in reduced CAPEX. Automated, integrated management of the end-to-end datacenter infrastructure lowers OPEX.

Interconnect Requirements

Some of the cloud computing applications, such as the recently emerged desktop capability, might allow for latencies of 50 milliseconds or more. Others, such as in high-performance computing, will demand ultra-low latency near one millisecond. A number of protocols vie for the role of datacenter interconnect for these more demanding applications.

Business-continuity and disaster-recovery solutions based on IBM’s Geographically Dispersed Parallel Sysplex (GDPS), for example, rely on screaming-fast InfiniBand for interconnection among remotely located datacenters and links to virtual storage.
Figure 1
An InfiniBand port — supporting up to 40Gb/s of bandwidth and as little as 1 microsecond of latency — is necessary for the highest-performance, transaction-sensitive applications. (In addition, InfiniBand cuts the I/O overhead introduced by virtualization in cloud computing.) An Ethernet port, by comparison, offers 10Gb/s of bandwidth and 6 microseconds of TCP protocol latency — though latencies as great as 40 to 50 microseconds are not uncommon. This is because larger networks interconnected via Ethernet ports sometimes require multiple tiers of hierarchical switching to offset the impact of oversubscription.

As for interconnection to storage resources within the datacenter, 8Gb/s Fibre Channel is the dominant protocol for large enterprise applications — enabling rapid backup and recovery when transported natively via Dense Wavelength Division Multiplexing (DWDM). It will need to be accommodated in the cloud, where storage requirements are tremendous.

The maturity of a protocol is a key consideration, as proven technologies will be a must for the mission-critical, high-bandwidth, low-latency applications now being supported via clustered virtual machines. For the foreseeable future, proven implementations of each of these protocols — InfiniBand, 8G Fibre Channel and some form of Ethernet — are likely to have roles in the cloud, because enterprise IT managers and carrier service planners are generally unwilling to commit their cloud infrastructures to any one of them alone.

DWDM accommodates high-performance, low-latency transport of each of these protocols in their native form over fiber spans of up to 600 kilometers. There is no need for the operator of a cloud computing network to take on the costs and complexities of installing channel-extender gateways. Plus, protocol-agnostic DWDM offers operators of cloud computing networks the flexibility to adopt emerging protocols — such as promising Fibre Channel over Ethernet (FCoE) — as they mature.

Convergence Hopes

Eventually, the future cloud datacenter is likely to rely on some form of single, converged fabric with server and storage virtualization. This vision — one flexible, reliable, high-performance protocol cost-effectively undergirding all local and storage area network (LAN and SAN) traffic — has been espoused in enterprise networking for years, and operators of cloud-computing infrastructures will seek to reduce the cost of cloud bandwidth as long as the required performance characteristics can be dependably delivered.

There are technologies on the horizon that are being touted for this convergence role. For example, interest in various forms of InfiniBand over Ethernet (IBoE) is gathering, but industry standards are a long way away. FCoE also bears watching.

In its current form, FCoE offers valuable I/O consolidation for racks of single-rack-unit or blade servers running new converged network adapters (CNAs). Emerging FCoE switches behave effectively as top-of-the-rack aggregators, distributing data traffic to either legacy LAN or SAN infrastructure. The performance characteristics promised by this technology — low latency and 10 to 40Gb/s bandwidth — are intriguing.

The enthusiasm for FCoE among operators of cloud-computing infrastructures is tempered by several factors, though. First, the protocol is far from proven in the kind of demanding, large-scale deployment that is typical of high-performance computing. Second, there are multiple issues with FCoE in relation to distance:

  • No existing standard yet defines the implementation of Inter-switch Links (ISLs) among geographically dispersed FCoE switches.
     
  • Multi-hop support is still forthcoming.
     
  • The ability to natively connect the technology across 100 kilometres or more has not been demonstrated.
     
  • Very few storage vendors offer native FCoE interfaces.

Until these enhancements come about, FCoE will play a limited role in the cloud.

Conclusions

While there is a clear desire to ultimately converge all enterprise traffic on a single unifying fabric, the real-world cloud-computing environment based on high-end servers must continue to support a range of existing multiprotocol fabrics that are optimized for a range of disparate tasks. InfiniBand, for example, provides the extremely high bandwidth and extremely low latency required by the most demanding of the widening array of cloud applications, such as those found in high-performance computing.

Enterprise IT managers and carrier service planners must continue to be savvy about matching technologies with applications to most cost-efficiently meet technical requirements and business objectives. InfiniBand, 8G Fibre Channel, flavors of Ethernet and other protocols such as iSCSI are likely to play important roles in enterprise networking for the next several years, and network operators who are introducing cloud computing must plan accordingly. Public cloud service providers, for example, should consider the potential benefits of direct attach storage into the cloud as an alternative to deploying and managing large numbers of FC-IP gateways.

Figure 2

The other problem with FC/IP gateways is the fact that storage performance is hamstrung if, for example, a 2G Fibre Channel stream is compressed to Gigabit Ethernet or OC-48s when native 4G, 8G, 10G and emerging 16G Fibre Channel are options at the same distances.

DWDM enables the full gamut of protocols to be commonly deployed and managed across existing optical networks. Because it enables each of the interconnect protocols to perform seamlessly at wire speed, without introducing additional latency, WDM is well positioned to deliver the unifying function network operators need as they roll out cloud computing services.

About the Authors

Dr. Casimer DeCusatisDr. Casimer DeCusatis is an IBM Distinguished Engineer based in Poughkeepsie, NY, where he currently serves as Chief Engineer of the IBM/Juniper alliance and architect for network and I/O solutions, including extended distance connectivity.  He is an IBM Master Inventor with over 85 patents, and recipient of several industry awards, including the IEEE Kiyo Tomiyasu Award, the EDN Innovator of the Year Award, the Mensa Research Foundation Copper Black Award for Creative Achievement, and the IEEE/HKN Outstanding Young Electrical Engineer award (including a citation from the President of the United States and an American flag flown in his honor over the U.S. Capitol). He is co-author of more than 100 technical papers, book chapters, and encyclopedia articles, and editor of the Handbook of Fiber Optic Data Communication (now in its 3rd edition). He is a member of the IBM Academy of Technology and co-leader of the Academy study “Innovation Ecosystems.” Dr. DeCusatis received the M.S. and Ph.D. degrees from Rensselaer Polytechnic Institute (Troy, NY) in 1988 and 1990, respectively, and the B.S. degree magna cum laude in the Engineering Science Honors Program from the Pennsylvania State University (University Park, Pa.) in 1986. He is a Fellow of the IEEE, Optical Society of America, and SPIE (the international optical engineering society), a member of the Order of the Engineer, Tau Beta Pi, Eta Kappa Nu, Mensa, and various other professional organizations and honor societies.  He also serves as Founder and Director of Hudson Valley FIRST Lego League, which offers over 1,000 students each year the opportunity to pursue their interest in science and technology.

Todd BundyTodd Bundy is Director Global Alliance Management Enterprise with ADVA Optical Networking. He has 26 years of experience in the storage networking industry, is a recognized expert in SAN and optical networking, and specializes in storage applications over various types of networks to meet corporate contingency plans. Mr. Bundy has participated in many successful large-scale Disaster Recovery and Data Center Consolidation projects with companies like IBM, using ADVA Optical Networking FSP (Fiber Service Platform) WDMs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This