Will Roadrunner Be the Cell’s Last Hurrah?

By Michael Feldman

October 27, 2009

With all the recent hoopla about GPGPU acceleration in high performance computing, it’s easy to forget that Roadrunner, the most powerful supercomputer in the world, is based on a different brand of accelerator. The machine at Los Alamos National Laboratory uses 12,960 IBM PowerXCell 8i CPUs hooked up to 6,480 AMD Opteron dual-core processors to deliver 1.1 petaflop performance on Linpack.

Because of the wide disparity in floating point performance between the PowerXCell 8i processor and the Opteron, the vast majority of Roadrunner’s floating point capability resides with the Cell processors. Each PowerXCell 8i delivers over 100 double precision gigaflops per chip, which means the Opteron only contributes about 3 percent of the FLOPS of the hybrid supercomputer.

Some of those FLOPS are already being put to good use, though. This week, Los Alamos announced that the lab had completed its “shakedown” phase for Roadrunner. Because the machine was installed in May 2008, this has allowed researchers over a year to experiment with some big science applications.

These unclassified science codes included a simulation of the expanding universe, a phylogenic exploration of the evolution of the Human Immunodeficiency Virus (HIV), a simulation of laser plasma interactions for nuclear fusion, an atomic-level model of nanowires, a model of “magnetic reconnection,” and a molecular dynamics simulation of how materials behave under extreme stress. All of these codes were able to make good use of the petascale performance of the Roadrunner.

Now that the shakedown period has concluded, the NNSA will move in to claim those FLOPS for nuclear weapons simulations. Since these applications are obviously of a classified nature, we’re not likely to hear much about their specific outcomes. Open science codes will still get a crack at the machine, but since Roadrunner’s primary mission is to support US nuclear deterrence, the unclassified workloads will presumably get pushed to the back of the line.

The bigger question is what are the longer-term prospects of a hybrid x86-Cell system architecture and the Cell processor, in general, for the high performance computing realm? Unlike GPUs or FPGAs, Cell processors contain their own CPU core (a PowerPC) along with eight SIMD coprocessing units, called Synergistic Processing Elements (SPE), so the chip represents a more fully functional architecture than its competition. Despite that advantage, the Cell’s penetration into general-purpose computing has remained somewhat limited. Although the original Cell processor was the basis for the PlayStation3 gaming console and the double-precision-enhanced PowerXCell variant has found a home in HPC blades, neither version is a commodity chip in the same sense as the x86 CPU or general-purpose GPUs. The result is that Cell-based solutions are strewn rather haphazardly across the HPC landscape.

Besides the high-profile Roadrunner system, IBM also offers a standalone QS22 Cell blade, which is deployed at a handful of sites, including the Interdisciplinary Centre for Mathematical and Computational Modeling at the University of Warsaw and Repsol YPF, a Spanish oil and gas company. As it turns out, these systems are among the most energy efficient, with the Warsaw system currently sitting atop the Green500 list. Other Cell accelerator boards are available from Mercury Computer Systems, Fixstars, and Sony, but I’ve yet to hear of any notable HPC deployments resulting from these products.

Cell processor developer tools certainly exist, but no standard environment has come to the fore. This is rather important since the heterogeneous nature of the Cell architecture means programming is inherently more difficult. IBM, of course, provides its own software development kit for the architecture. Outside of Big Blue, Mercury Computer Systems has a Cell-friendly Multicore Plus SDK, and software vendor Gedae sells a compiler. RapidMind offers Cell support in its multicore development platform, but since the company was acquired by Intel, its Cell-loving days are likely coming to a close. French software maker CAPS was planning to offer Cell support in its HMPP manycore development suite sometime this year, but that hasn’t come to pass.

With NVIDIA’s Fermi GPU architecture poised to make a big entrance into high performance computing in 2010, IBM will have to make a decision about adding GPU acceleration to its existing HPC server lineup. Server rival HP has apparently already committed to including Fermi hardware in its offerings. Last week Georgia Tech announced HP and NVIDIA would be delivering a sub-petaflop supercomputer to the institute in early 2010. That system will be based on Intel Xeon servers accelerated by Fermi processors. Other HPC vendors, including Cray, have announced plans to bring Fermi into their product lines. If GPUs become the mainstream accelerator for HPC servers, IBM will be forced to follow suit.

That’s not to say IBM will give up on its home-grown Cell chip. Big Blue has a tradition of offering a smorgasbord of architectures to its customers, especially in the HPC market. Today the company has high-end server products based on x86 CPUs, Blue Gene (PowerPC-based) SoCs, Power CPUs, and the Cell processor. Adding GPU-accelerated hardware wouldn’t necessarily mean ditching the Cell.

On the other hand, IBM has to consider if it wants to reinvest in the architecture to keep up with the latest GPU performance numbers from NVIDIA and AMD, which would mean getting a single Cell processor to deliver hundreds of gigaflops of double-precision performance. IBM is certainly capable of building such a chip, but there’s little motivation to do so. With no established base of customers clamoring for Cell-equipped supercomputers and with a relatively small volume of Cell chips from which to leverage high-end parts, it’s hard to imagine that Big Blue will be doubling down on its Cell bet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This