Will Roadrunner Be the Cell’s Last Hurrah?

By Michael Feldman

October 27, 2009

With all the recent hoopla about GPGPU acceleration in high performance computing, it’s easy to forget that Roadrunner, the most powerful supercomputer in the world, is based on a different brand of accelerator. The machine at Los Alamos National Laboratory uses 12,960 IBM PowerXCell 8i CPUs hooked up to 6,480 AMD Opteron dual-core processors to deliver 1.1 petaflop performance on Linpack.

Because of the wide disparity in floating point performance between the PowerXCell 8i processor and the Opteron, the vast majority of Roadrunner’s floating point capability resides with the Cell processors. Each PowerXCell 8i delivers over 100 double precision gigaflops per chip, which means the Opteron only contributes about 3 percent of the FLOPS of the hybrid supercomputer.

Some of those FLOPS are already being put to good use, though. This week, Los Alamos announced that the lab had completed its “shakedown” phase for Roadrunner. Because the machine was installed in May 2008, this has allowed researchers over a year to experiment with some big science applications.

These unclassified science codes included a simulation of the expanding universe, a phylogenic exploration of the evolution of the Human Immunodeficiency Virus (HIV), a simulation of laser plasma interactions for nuclear fusion, an atomic-level model of nanowires, a model of “magnetic reconnection,” and a molecular dynamics simulation of how materials behave under extreme stress. All of these codes were able to make good use of the petascale performance of the Roadrunner.

Now that the shakedown period has concluded, the NNSA will move in to claim those FLOPS for nuclear weapons simulations. Since these applications are obviously of a classified nature, we’re not likely to hear much about their specific outcomes. Open science codes will still get a crack at the machine, but since Roadrunner’s primary mission is to support US nuclear deterrence, the unclassified workloads will presumably get pushed to the back of the line.

The bigger question is what are the longer-term prospects of a hybrid x86-Cell system architecture and the Cell processor, in general, for the high performance computing realm? Unlike GPUs or FPGAs, Cell processors contain their own CPU core (a PowerPC) along with eight SIMD coprocessing units, called Synergistic Processing Elements (SPE), so the chip represents a more fully functional architecture than its competition. Despite that advantage, the Cell’s penetration into general-purpose computing has remained somewhat limited. Although the original Cell processor was the basis for the PlayStation3 gaming console and the double-precision-enhanced PowerXCell variant has found a home in HPC blades, neither version is a commodity chip in the same sense as the x86 CPU or general-purpose GPUs. The result is that Cell-based solutions are strewn rather haphazardly across the HPC landscape.

Besides the high-profile Roadrunner system, IBM also offers a standalone QS22 Cell blade, which is deployed at a handful of sites, including the Interdisciplinary Centre for Mathematical and Computational Modeling at the University of Warsaw and Repsol YPF, a Spanish oil and gas company. As it turns out, these systems are among the most energy efficient, with the Warsaw system currently sitting atop the Green500 list. Other Cell accelerator boards are available from Mercury Computer Systems, Fixstars, and Sony, but I’ve yet to hear of any notable HPC deployments resulting from these products.

Cell processor developer tools certainly exist, but no standard environment has come to the fore. This is rather important since the heterogeneous nature of the Cell architecture means programming is inherently more difficult. IBM, of course, provides its own software development kit for the architecture. Outside of Big Blue, Mercury Computer Systems has a Cell-friendly Multicore Plus SDK, and software vendor Gedae sells a compiler. RapidMind offers Cell support in its multicore development platform, but since the company was acquired by Intel, its Cell-loving days are likely coming to a close. French software maker CAPS was planning to offer Cell support in its HMPP manycore development suite sometime this year, but that hasn’t come to pass.

With NVIDIA’s Fermi GPU architecture poised to make a big entrance into high performance computing in 2010, IBM will have to make a decision about adding GPU acceleration to its existing HPC server lineup. Server rival HP has apparently already committed to including Fermi hardware in its offerings. Last week Georgia Tech announced HP and NVIDIA would be delivering a sub-petaflop supercomputer to the institute in early 2010. That system will be based on Intel Xeon servers accelerated by Fermi processors. Other HPC vendors, including Cray, have announced plans to bring Fermi into their product lines. If GPUs become the mainstream accelerator for HPC servers, IBM will be forced to follow suit.

That’s not to say IBM will give up on its home-grown Cell chip. Big Blue has a tradition of offering a smorgasbord of architectures to its customers, especially in the HPC market. Today the company has high-end server products based on x86 CPUs, Blue Gene (PowerPC-based) SoCs, Power CPUs, and the Cell processor. Adding GPU-accelerated hardware wouldn’t necessarily mean ditching the Cell.

On the other hand, IBM has to consider if it wants to reinvest in the architecture to keep up with the latest GPU performance numbers from NVIDIA and AMD, which would mean getting a single Cell processor to deliver hundreds of gigaflops of double-precision performance. IBM is certainly capable of building such a chip, but there’s little motivation to do so. With no established base of customers clamoring for Cell-equipped supercomputers and with a relatively small volume of Cell chips from which to leverage high-end parts, it’s hard to imagine that Big Blue will be doubling down on its Cell bet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This