Will Roadrunner Be the Cell’s Last Hurrah?

By Michael Feldman

October 27, 2009

With all the recent hoopla about GPGPU acceleration in high performance computing, it’s easy to forget that Roadrunner, the most powerful supercomputer in the world, is based on a different brand of accelerator. The machine at Los Alamos National Laboratory uses 12,960 IBM PowerXCell 8i CPUs hooked up to 6,480 AMD Opteron dual-core processors to deliver 1.1 petaflop performance on Linpack.

Because of the wide disparity in floating point performance between the PowerXCell 8i processor and the Opteron, the vast majority of Roadrunner’s floating point capability resides with the Cell processors. Each PowerXCell 8i delivers over 100 double precision gigaflops per chip, which means the Opteron only contributes about 3 percent of the FLOPS of the hybrid supercomputer.

Some of those FLOPS are already being put to good use, though. This week, Los Alamos announced that the lab had completed its “shakedown” phase for Roadrunner. Because the machine was installed in May 2008, this has allowed researchers over a year to experiment with some big science applications.

These unclassified science codes included a simulation of the expanding universe, a phylogenic exploration of the evolution of the Human Immunodeficiency Virus (HIV), a simulation of laser plasma interactions for nuclear fusion, an atomic-level model of nanowires, a model of “magnetic reconnection,” and a molecular dynamics simulation of how materials behave under extreme stress. All of these codes were able to make good use of the petascale performance of the Roadrunner.

Now that the shakedown period has concluded, the NNSA will move in to claim those FLOPS for nuclear weapons simulations. Since these applications are obviously of a classified nature, we’re not likely to hear much about their specific outcomes. Open science codes will still get a crack at the machine, but since Roadrunner’s primary mission is to support US nuclear deterrence, the unclassified workloads will presumably get pushed to the back of the line.

The bigger question is what are the longer-term prospects of a hybrid x86-Cell system architecture and the Cell processor, in general, for the high performance computing realm? Unlike GPUs or FPGAs, Cell processors contain their own CPU core (a PowerPC) along with eight SIMD coprocessing units, called Synergistic Processing Elements (SPE), so the chip represents a more fully functional architecture than its competition. Despite that advantage, the Cell’s penetration into general-purpose computing has remained somewhat limited. Although the original Cell processor was the basis for the PlayStation3 gaming console and the double-precision-enhanced PowerXCell variant has found a home in HPC blades, neither version is a commodity chip in the same sense as the x86 CPU or general-purpose GPUs. The result is that Cell-based solutions are strewn rather haphazardly across the HPC landscape.

Besides the high-profile Roadrunner system, IBM also offers a standalone QS22 Cell blade, which is deployed at a handful of sites, including the Interdisciplinary Centre for Mathematical and Computational Modeling at the University of Warsaw and Repsol YPF, a Spanish oil and gas company. As it turns out, these systems are among the most energy efficient, with the Warsaw system currently sitting atop the Green500 list. Other Cell accelerator boards are available from Mercury Computer Systems, Fixstars, and Sony, but I’ve yet to hear of any notable HPC deployments resulting from these products.

Cell processor developer tools certainly exist, but no standard environment has come to the fore. This is rather important since the heterogeneous nature of the Cell architecture means programming is inherently more difficult. IBM, of course, provides its own software development kit for the architecture. Outside of Big Blue, Mercury Computer Systems has a Cell-friendly Multicore Plus SDK, and software vendor Gedae sells a compiler. RapidMind offers Cell support in its multicore development platform, but since the company was acquired by Intel, its Cell-loving days are likely coming to a close. French software maker CAPS was planning to offer Cell support in its HMPP manycore development suite sometime this year, but that hasn’t come to pass.

With NVIDIA’s Fermi GPU architecture poised to make a big entrance into high performance computing in 2010, IBM will have to make a decision about adding GPU acceleration to its existing HPC server lineup. Server rival HP has apparently already committed to including Fermi hardware in its offerings. Last week Georgia Tech announced HP and NVIDIA would be delivering a sub-petaflop supercomputer to the institute in early 2010. That system will be based on Intel Xeon servers accelerated by Fermi processors. Other HPC vendors, including Cray, have announced plans to bring Fermi into their product lines. If GPUs become the mainstream accelerator for HPC servers, IBM will be forced to follow suit.

That’s not to say IBM will give up on its home-grown Cell chip. Big Blue has a tradition of offering a smorgasbord of architectures to its customers, especially in the HPC market. Today the company has high-end server products based on x86 CPUs, Blue Gene (PowerPC-based) SoCs, Power CPUs, and the Cell processor. Adding GPU-accelerated hardware wouldn’t necessarily mean ditching the Cell.

On the other hand, IBM has to consider if it wants to reinvest in the architecture to keep up with the latest GPU performance numbers from NVIDIA and AMD, which would mean getting a single Cell processor to deliver hundreds of gigaflops of double-precision performance. IBM is certainly capable of building such a chip, but there’s little motivation to do so. With no established base of customers clamoring for Cell-equipped supercomputers and with a relatively small volume of Cell chips from which to leverage high-end parts, it’s hard to imagine that Big Blue will be doubling down on its Cell bet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This