Will Roadrunner Be the Cell’s Last Hurrah?

By Michael Feldman

October 27, 2009

With all the recent hoopla about GPGPU acceleration in high performance computing, it’s easy to forget that Roadrunner, the most powerful supercomputer in the world, is based on a different brand of accelerator. The machine at Los Alamos National Laboratory uses 12,960 IBM PowerXCell 8i CPUs hooked up to 6,480 AMD Opteron dual-core processors to deliver 1.1 petaflop performance on Linpack.

Because of the wide disparity in floating point performance between the PowerXCell 8i processor and the Opteron, the vast majority of Roadrunner’s floating point capability resides with the Cell processors. Each PowerXCell 8i delivers over 100 double precision gigaflops per chip, which means the Opteron only contributes about 3 percent of the FLOPS of the hybrid supercomputer.

Some of those FLOPS are already being put to good use, though. This week, Los Alamos announced that the lab had completed its “shakedown” phase for Roadrunner. Because the machine was installed in May 2008, this has allowed researchers over a year to experiment with some big science applications.

These unclassified science codes included a simulation of the expanding universe, a phylogenic exploration of the evolution of the Human Immunodeficiency Virus (HIV), a simulation of laser plasma interactions for nuclear fusion, an atomic-level model of nanowires, a model of “magnetic reconnection,” and a molecular dynamics simulation of how materials behave under extreme stress. All of these codes were able to make good use of the petascale performance of the Roadrunner.

Now that the shakedown period has concluded, the NNSA will move in to claim those FLOPS for nuclear weapons simulations. Since these applications are obviously of a classified nature, we’re not likely to hear much about their specific outcomes. Open science codes will still get a crack at the machine, but since Roadrunner’s primary mission is to support US nuclear deterrence, the unclassified workloads will presumably get pushed to the back of the line.

The bigger question is what are the longer-term prospects of a hybrid x86-Cell system architecture and the Cell processor, in general, for the high performance computing realm? Unlike GPUs or FPGAs, Cell processors contain their own CPU core (a PowerPC) along with eight SIMD coprocessing units, called Synergistic Processing Elements (SPE), so the chip represents a more fully functional architecture than its competition. Despite that advantage, the Cell’s penetration into general-purpose computing has remained somewhat limited. Although the original Cell processor was the basis for the PlayStation3 gaming console and the double-precision-enhanced PowerXCell variant has found a home in HPC blades, neither version is a commodity chip in the same sense as the x86 CPU or general-purpose GPUs. The result is that Cell-based solutions are strewn rather haphazardly across the HPC landscape.

Besides the high-profile Roadrunner system, IBM also offers a standalone QS22 Cell blade, which is deployed at a handful of sites, including the Interdisciplinary Centre for Mathematical and Computational Modeling at the University of Warsaw and Repsol YPF, a Spanish oil and gas company. As it turns out, these systems are among the most energy efficient, with the Warsaw system currently sitting atop the Green500 list. Other Cell accelerator boards are available from Mercury Computer Systems, Fixstars, and Sony, but I’ve yet to hear of any notable HPC deployments resulting from these products.

Cell processor developer tools certainly exist, but no standard environment has come to the fore. This is rather important since the heterogeneous nature of the Cell architecture means programming is inherently more difficult. IBM, of course, provides its own software development kit for the architecture. Outside of Big Blue, Mercury Computer Systems has a Cell-friendly Multicore Plus SDK, and software vendor Gedae sells a compiler. RapidMind offers Cell support in its multicore development platform, but since the company was acquired by Intel, its Cell-loving days are likely coming to a close. French software maker CAPS was planning to offer Cell support in its HMPP manycore development suite sometime this year, but that hasn’t come to pass.

With NVIDIA’s Fermi GPU architecture poised to make a big entrance into high performance computing in 2010, IBM will have to make a decision about adding GPU acceleration to its existing HPC server lineup. Server rival HP has apparently already committed to including Fermi hardware in its offerings. Last week Georgia Tech announced HP and NVIDIA would be delivering a sub-petaflop supercomputer to the institute in early 2010. That system will be based on Intel Xeon servers accelerated by Fermi processors. Other HPC vendors, including Cray, have announced plans to bring Fermi into their product lines. If GPUs become the mainstream accelerator for HPC servers, IBM will be forced to follow suit.

That’s not to say IBM will give up on its home-grown Cell chip. Big Blue has a tradition of offering a smorgasbord of architectures to its customers, especially in the HPC market. Today the company has high-end server products based on x86 CPUs, Blue Gene (PowerPC-based) SoCs, Power CPUs, and the Cell processor. Adding GPU-accelerated hardware wouldn’t necessarily mean ditching the Cell.

On the other hand, IBM has to consider if it wants to reinvest in the architecture to keep up with the latest GPU performance numbers from NVIDIA and AMD, which would mean getting a single Cell processor to deliver hundreds of gigaflops of double-precision performance. IBM is certainly capable of building such a chip, but there’s little motivation to do so. With no established base of customers clamoring for Cell-equipped supercomputers and with a relatively small volume of Cell chips from which to leverage high-end parts, it’s hard to imagine that Big Blue will be doubling down on its Cell bet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This