Cloud Computing Opportunities in HPC

By Christopher G. Willard, Ph.D., Addison Snell, Laura Segervall

November 2, 2009

This article is excerpted from “Cloud Opportunities in HPC: Market Taxonomy,” published by InterSect360 Research. The full article was distributed to subscribers of the InterSect360 market advisory service and can also be obtained by contacting sales@intersect360.com.

In Life, the Universe, and Everything, the third book of Douglas Adams’ whimsical Hitchhiker fantasy trilogy, cosmic wayfarer Ford Prefect describes how an object, even a large object, could effectively be rendered invisible to the general populace by surrounding it with an “SEP field” that causes would-be observers to avoid recognizing Somebody Else’s Problem. “An SEP,” Ford helpfully explains, “is something we can’t see, or don’t see, or our brain doesn’t let us see, because we think that it’s somebody else’s problem.”

If we were to reinterpret SEP to stand for “Somebody Else’s Processing,” we would be well on the way to a definition of cloud computing.

The term “cloud” comes from the engineering practice of drawing a cloud in a schematic to represent an external resource that the engineer’s design will interact with — a part of the workflow that he or she will assume is working but that is not part of that specific design. For example, a processor designer might draw a cloud to represent a memory system, with arrows indicating the flow of data in and out of the memory cloud. Cloud computing takes this concept to an organizational level; entire sections of IT workflows can now be virtualized into resources that are someone else’s concern.

Cloud computing is therefore a new instantiation of distributed computing. It is built on grid computing concepts and technology and further enabled by Internet technologies for access. Cloud computing is the delivery of some part of an IT workflow — such as computational cycles, data storage, or application hosting — using an Internet-style interface. This definition includes Web-immersed intranets as conduits for accessing private clouds.

Cloud computing is currently driven by business models that attempt to utilize or monetize unused resources. Grid, virtualization, and now cloud technologies have attempted to find and tap idle resources, thus reducing costs or generating revenue. The most interesting difference between cloud computing and earlier forms of distributed computing is that in developing ultra-scale computing centers, organizations such as Google and Amazon incidentally built out significant caches of occasionally idle computing resources that could be made generally available through the Internet. Furthermore these organizations found that they had developed significant skills in constructing and managing these resources, and economies of scale allowed them to purchase incremental equipment at relatively lower prices. The cloud was born as an effort to monetize those skills, economic advantages, and excess capacity.

This is important because from a business model point of view the cloud resources came into existence at no cost, with minimal incremental support requirements. The majority of the costs are born by the core businesses, and therefore, at least initially, customers of the excess capacity do not need to foot the bill for capital expenditures. Costs associated with staff training, facilities, and development are similarly already fully amortized and absorbed by the parent businesses. There is little more appealing than being able to sell something that you get for free.

With such an appealing proposition in play, many other organizations are scrambling to see whether they have an infrastructure — public or private — that can be exploited for gain through cloud computing. However, when significant excess capacity does not exist, or if it cannot be leveraged in a timely or reliable fashion, it is not clear what sustainable business models exist for cloud computing.

High-end, public cloud computing offerings represent a convergence of grid and Internet technologies, potentially enabling workable new business models. Smaller, private clouds are a technical evolution that expands the ease of use and deployment of grids in more organizations.

As cloud computing technologies mature, InterSect360 Research sees several possible business models that could evolve. Although we emphasize High Performance Computing in our analysis, cloud computing transcends HPC, and similar models will exist in non-HPC markets.

Utility Computing Models

Cloud computing provides a methodology for extending utility computing access models. Utility computing is not new; it has been touted for several years as a way for users to manage peaks in demand, extend capabilities, or reduce costs. Traditionally, limitations in network bandwidth, security issues, software licensing models, and repeatability of results have acted as barriers to adoption, and all of these still need to be addressed with cloud.

There are four major variations on the potential utility computing models with cloud:

Cycles On Demand

The cycles-on-demand model is the most basic approach to cloud computing. The cloud supplier provides hardware and basic software environments, and the user provides application software, application data, and any additional middleware required. In this case users are simply buying access to computer processors, which they provision and manage as needed in order to run their applications, after which the resources are “returned” to the cloud provider. Users are charged for the time the resources are in use, plus possibly some overhead costs. The demands are relatively low on the cloud provider, and relatively high on the user in terms of making sure there is effective utility generated by the rented resources.

Storage Clouds

The storage cloud model complements the cycles-on-demand model both in terms of operational approach — users buy disk space at a cloud providers facility — and in terms of providing a more complete solution for cycles users — a place to put programs and data between job runs. In the storage-on-demand approach the cloud is used:

  • As the final (archival) stage in hierarchical storage management schemes (even if it is a two-level hierarchy: local disk and cloud). On the consumer side this is essentially the concept used for PC backup services.
     
  • A file-sharing buffer where users can place data that can be accessed at a later time by other users. This approach is at the heart of photo sharing sites, and arguably with social sites such as Facebook and LinkedIn. This same concept is also used for shared science databases in areas such as genomics and chemistry.

Software as a Service

Software as a service (SaaS) extends the basic cycles-on-demand model by providing application software within the cloud. This model addresses software licensing issues by bundling the software costs within the cloud processing costs. It also addresses software certification and results repeatability issues because the cloud provider controls both the hardware and software environment and can provide specific system images to users.

SaaS also has the advantages for providers of allowing them to sell services along with the software, and to use the cloud as demonstration platform for direct sales of software products. In addition, the user is able to turn much of the system administration task over to the provider. The major drawback to this strategy is that users generally run of a series of software packages as part of their overall R&D workflow, in such case data would need to be moved into and out of the cloud for specific stages of the workflow, or the cloud provider must support an end-to-end process.

Environment Hosting

Environmental hosting is the use of a service to support virtually all computational tasks, with servers, storage, and software all being maintained by a third party. This concept can include constructs such as platform as a service (PaaS) and infrastructure as a service (IaaS). Arguably environmental hosting in the cloud is an oxymoron, however, it represents the upper end of the utility computing spectrum and a logical destination of cloud strategies. This approach addresses software, result repeatability, and most networking issues by simply providing dedicated resources all in one (logical) place. It addresses many of the technical security issues, but not a consumer organization’s security problem of inserting a third party into the workflow process.

Cloud-Generated Markets

In addition to the models for those who would consume resources through the cloud, there are applications that are made possible by the combination of Internet communications and large computing resources. This is inclusive of the opportunities for organizations to become cloud computing service providers, either externally or internally. In addition, there is the potential for some secondary markets to be enabled by the adoption of cloud technologies.

Restructuring of Internet-Based Service Infrastructures

One of the most interesting aspects of cloud computing is that Internet companies with value-add and expertise in intellectual property or content (as opposed to purchasing, managing, and running computer hardware systems) could move their internal computing architecture to the cloud, while maintaining system management and operating control in-house. With this strategy an organization would move the bulk of its computing to the cloud keeping only what is necessary for communications and cloud management, in doing so they convert internal costs for systems, software, staff, space and power into usage fees in the cloud. Cloud technology and service providers facilitate and accelerate the industry’s evolution towards a network of interrelated specialty companies, as opposed to groups of organizations each performing the same set of infrastructure functions in house. The major issue potentially holding this model back would be cost; i.e., the level of premium users would be willing to pay for a service versus a do-it-yourself solution.

Personal Clouds

This strategy would replace personal computers with an advanced terminal that connected to a cloud utility that holds all of the user’s data and software. The advantage for users is that they would be relieved of the burden of purchasing, maintaining, and upgrading their personal systems. They would also have professional support for such task as system back-up and system security and would also be able to access their computing environment form any Web-connected device.

This strategy may represent the evolutionary future of the Internet, particularly as more devices become Web-enabled and the relationship between the Web and the personal computer is weakened by competing devices, such as smart phones. The main challenge to this model is overall bandwidth on the Internet. Side effects to such an evolution would replace the role of the operating system with a Web browser and whatever backend environment the cloud supplier chose to provide, also creating a new product class for Web terminals.

InterSect360 Research Analysis

We see cloud computing as part of the logical progression in distributed computing. It is not completely revolutionary, nor is it a panacea that will provide any service that can be imagined. The business models must be considered in terms of cost and control, barriers and benefits.

Of all the cloud business models, InterSect360 Research believes that SaaS has the highest potential for success within HPC. It addresses several of the major dampening factors associated with cloud and provides additional revenue opportunities in the services arena. It also targets industrial users, who would be the most likely to pay a premium for the product, without attempting to develop competing solutions. Furthermore companies can adopting SaaS models in cloud in a phased or tiered way, first proving the concept private clouds before giving themselves over to public or hybrid models. (This same phenomenon persists with private and public grids today.)

Organizations that have experience with the software and in house operations may look to SaaS options for peak load management and capacity extension. However, we believe the greater opportunity is for selling packaged cloud computing, software, and start-up services to companies testing HPC solutions. Our research indicates that there are major start-up barriers to using HPC solutions among small and medium companies. These barriers include finding the expertise for the creation of the organization’s first scalable digital models.

The major barrier for SaaS adoption in HPC is the fragmentation of the applications software sector of the industry. The boutique nature of the opportunity may indicate there is not sufficient volume to merit the ISV’s investment to create and market cloud-enable versions of their applications. Interestingly, in a recursive manner, small SaaS providers could theoretically tap into larger cycles-on-demand cloud providers to supply the computing resources.

Similarly, implementation of environment hosting within current cloud environments for HPC organizations would currently entail significant amounts of effort by the user organization to set up and manage storage and software environments. It would also be limited by software licensing issues for industrial users in particular. Thus market opportunities for this option are very limited at this time. That said, a small organization could conceivably do all its computing in the cloud, keeping all its data on cloud storage system, using only internally developed, open-source, or SaaS software, and trusting in small size as part of a herd to provide security.

Finally, we note that Web-based software services are not new to the market; they currently range from income tax preparation services to on-line gaming companies. SaaS fits into cloud markets based on the concept of work being sent to outside party and results returned, without the sender having knowledge of exactly how those results are generated. For some users, SaaS may inherently make sense. Ultimately the best way to help users adopt HPC applications may be to make them Somebody Else’s Problem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This