Cloud Computing Opportunities in HPC

By Christopher G. Willard, Ph.D., Addison Snell, Laura Segervall

November 2, 2009

This article is excerpted from “Cloud Opportunities in HPC: Market Taxonomy,” published by InterSect360 Research. The full article was distributed to subscribers of the InterSect360 market advisory service and can also be obtained by contacting sales@intersect360.com.

In Life, the Universe, and Everything, the third book of Douglas Adams’ whimsical Hitchhiker fantasy trilogy, cosmic wayfarer Ford Prefect describes how an object, even a large object, could effectively be rendered invisible to the general populace by surrounding it with an “SEP field” that causes would-be observers to avoid recognizing Somebody Else’s Problem. “An SEP,” Ford helpfully explains, “is something we can’t see, or don’t see, or our brain doesn’t let us see, because we think that it’s somebody else’s problem.”

If we were to reinterpret SEP to stand for “Somebody Else’s Processing,” we would be well on the way to a definition of cloud computing.

The term “cloud” comes from the engineering practice of drawing a cloud in a schematic to represent an external resource that the engineer’s design will interact with — a part of the workflow that he or she will assume is working but that is not part of that specific design. For example, a processor designer might draw a cloud to represent a memory system, with arrows indicating the flow of data in and out of the memory cloud. Cloud computing takes this concept to an organizational level; entire sections of IT workflows can now be virtualized into resources that are someone else’s concern.

Cloud computing is therefore a new instantiation of distributed computing. It is built on grid computing concepts and technology and further enabled by Internet technologies for access. Cloud computing is the delivery of some part of an IT workflow — such as computational cycles, data storage, or application hosting — using an Internet-style interface. This definition includes Web-immersed intranets as conduits for accessing private clouds.

Cloud computing is currently driven by business models that attempt to utilize or monetize unused resources. Grid, virtualization, and now cloud technologies have attempted to find and tap idle resources, thus reducing costs or generating revenue. The most interesting difference between cloud computing and earlier forms of distributed computing is that in developing ultra-scale computing centers, organizations such as Google and Amazon incidentally built out significant caches of occasionally idle computing resources that could be made generally available through the Internet. Furthermore these organizations found that they had developed significant skills in constructing and managing these resources, and economies of scale allowed them to purchase incremental equipment at relatively lower prices. The cloud was born as an effort to monetize those skills, economic advantages, and excess capacity.

This is important because from a business model point of view the cloud resources came into existence at no cost, with minimal incremental support requirements. The majority of the costs are born by the core businesses, and therefore, at least initially, customers of the excess capacity do not need to foot the bill for capital expenditures. Costs associated with staff training, facilities, and development are similarly already fully amortized and absorbed by the parent businesses. There is little more appealing than being able to sell something that you get for free.

With such an appealing proposition in play, many other organizations are scrambling to see whether they have an infrastructure — public or private — that can be exploited for gain through cloud computing. However, when significant excess capacity does not exist, or if it cannot be leveraged in a timely or reliable fashion, it is not clear what sustainable business models exist for cloud computing.

High-end, public cloud computing offerings represent a convergence of grid and Internet technologies, potentially enabling workable new business models. Smaller, private clouds are a technical evolution that expands the ease of use and deployment of grids in more organizations.

As cloud computing technologies mature, InterSect360 Research sees several possible business models that could evolve. Although we emphasize High Performance Computing in our analysis, cloud computing transcends HPC, and similar models will exist in non-HPC markets.

Utility Computing Models

Cloud computing provides a methodology for extending utility computing access models. Utility computing is not new; it has been touted for several years as a way for users to manage peaks in demand, extend capabilities, or reduce costs. Traditionally, limitations in network bandwidth, security issues, software licensing models, and repeatability of results have acted as barriers to adoption, and all of these still need to be addressed with cloud.

There are four major variations on the potential utility computing models with cloud:

Cycles On Demand

The cycles-on-demand model is the most basic approach to cloud computing. The cloud supplier provides hardware and basic software environments, and the user provides application software, application data, and any additional middleware required. In this case users are simply buying access to computer processors, which they provision and manage as needed in order to run their applications, after which the resources are “returned” to the cloud provider. Users are charged for the time the resources are in use, plus possibly some overhead costs. The demands are relatively low on the cloud provider, and relatively high on the user in terms of making sure there is effective utility generated by the rented resources.

Storage Clouds

The storage cloud model complements the cycles-on-demand model both in terms of operational approach — users buy disk space at a cloud providers facility — and in terms of providing a more complete solution for cycles users — a place to put programs and data between job runs. In the storage-on-demand approach the cloud is used:

  • As the final (archival) stage in hierarchical storage management schemes (even if it is a two-level hierarchy: local disk and cloud). On the consumer side this is essentially the concept used for PC backup services.
     
  • A file-sharing buffer where users can place data that can be accessed at a later time by other users. This approach is at the heart of photo sharing sites, and arguably with social sites such as Facebook and LinkedIn. This same concept is also used for shared science databases in areas such as genomics and chemistry.

Software as a Service

Software as a service (SaaS) extends the basic cycles-on-demand model by providing application software within the cloud. This model addresses software licensing issues by bundling the software costs within the cloud processing costs. It also addresses software certification and results repeatability issues because the cloud provider controls both the hardware and software environment and can provide specific system images to users.

SaaS also has the advantages for providers of allowing them to sell services along with the software, and to use the cloud as demonstration platform for direct sales of software products. In addition, the user is able to turn much of the system administration task over to the provider. The major drawback to this strategy is that users generally run of a series of software packages as part of their overall R&D workflow, in such case data would need to be moved into and out of the cloud for specific stages of the workflow, or the cloud provider must support an end-to-end process.

Environment Hosting

Environmental hosting is the use of a service to support virtually all computational tasks, with servers, storage, and software all being maintained by a third party. This concept can include constructs such as platform as a service (PaaS) and infrastructure as a service (IaaS). Arguably environmental hosting in the cloud is an oxymoron, however, it represents the upper end of the utility computing spectrum and a logical destination of cloud strategies. This approach addresses software, result repeatability, and most networking issues by simply providing dedicated resources all in one (logical) place. It addresses many of the technical security issues, but not a consumer organization’s security problem of inserting a third party into the workflow process.

Cloud-Generated Markets

In addition to the models for those who would consume resources through the cloud, there are applications that are made possible by the combination of Internet communications and large computing resources. This is inclusive of the opportunities for organizations to become cloud computing service providers, either externally or internally. In addition, there is the potential for some secondary markets to be enabled by the adoption of cloud technologies.

Restructuring of Internet-Based Service Infrastructures

One of the most interesting aspects of cloud computing is that Internet companies with value-add and expertise in intellectual property or content (as opposed to purchasing, managing, and running computer hardware systems) could move their internal computing architecture to the cloud, while maintaining system management and operating control in-house. With this strategy an organization would move the bulk of its computing to the cloud keeping only what is necessary for communications and cloud management, in doing so they convert internal costs for systems, software, staff, space and power into usage fees in the cloud. Cloud technology and service providers facilitate and accelerate the industry’s evolution towards a network of interrelated specialty companies, as opposed to groups of organizations each performing the same set of infrastructure functions in house. The major issue potentially holding this model back would be cost; i.e., the level of premium users would be willing to pay for a service versus a do-it-yourself solution.

Personal Clouds

This strategy would replace personal computers with an advanced terminal that connected to a cloud utility that holds all of the user’s data and software. The advantage for users is that they would be relieved of the burden of purchasing, maintaining, and upgrading their personal systems. They would also have professional support for such task as system back-up and system security and would also be able to access their computing environment form any Web-connected device.

This strategy may represent the evolutionary future of the Internet, particularly as more devices become Web-enabled and the relationship between the Web and the personal computer is weakened by competing devices, such as smart phones. The main challenge to this model is overall bandwidth on the Internet. Side effects to such an evolution would replace the role of the operating system with a Web browser and whatever backend environment the cloud supplier chose to provide, also creating a new product class for Web terminals.

InterSect360 Research Analysis

We see cloud computing as part of the logical progression in distributed computing. It is not completely revolutionary, nor is it a panacea that will provide any service that can be imagined. The business models must be considered in terms of cost and control, barriers and benefits.

Of all the cloud business models, InterSect360 Research believes that SaaS has the highest potential for success within HPC. It addresses several of the major dampening factors associated with cloud and provides additional revenue opportunities in the services arena. It also targets industrial users, who would be the most likely to pay a premium for the product, without attempting to develop competing solutions. Furthermore companies can adopting SaaS models in cloud in a phased or tiered way, first proving the concept private clouds before giving themselves over to public or hybrid models. (This same phenomenon persists with private and public grids today.)

Organizations that have experience with the software and in house operations may look to SaaS options for peak load management and capacity extension. However, we believe the greater opportunity is for selling packaged cloud computing, software, and start-up services to companies testing HPC solutions. Our research indicates that there are major start-up barriers to using HPC solutions among small and medium companies. These barriers include finding the expertise for the creation of the organization’s first scalable digital models.

The major barrier for SaaS adoption in HPC is the fragmentation of the applications software sector of the industry. The boutique nature of the opportunity may indicate there is not sufficient volume to merit the ISV’s investment to create and market cloud-enable versions of their applications. Interestingly, in a recursive manner, small SaaS providers could theoretically tap into larger cycles-on-demand cloud providers to supply the computing resources.

Similarly, implementation of environment hosting within current cloud environments for HPC organizations would currently entail significant amounts of effort by the user organization to set up and manage storage and software environments. It would also be limited by software licensing issues for industrial users in particular. Thus market opportunities for this option are very limited at this time. That said, a small organization could conceivably do all its computing in the cloud, keeping all its data on cloud storage system, using only internally developed, open-source, or SaaS software, and trusting in small size as part of a herd to provide security.

Finally, we note that Web-based software services are not new to the market; they currently range from income tax preparation services to on-line gaming companies. SaaS fits into cloud markets based on the concept of work being sent to outside party and results returned, without the sender having knowledge of exactly how those results are generated. For some users, SaaS may inherently make sense. Ultimately the best way to help users adopt HPC applications may be to make them Somebody Else’s Problem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This