Cloud Computing Opportunities in HPC

By Christopher G. Willard, Ph.D., Addison Snell, Laura Segervall

November 2, 2009

This article is excerpted from “Cloud Opportunities in HPC: Market Taxonomy,” published by InterSect360 Research. The full article was distributed to subscribers of the InterSect360 market advisory service and can also be obtained by contacting sales@intersect360.com.

In Life, the Universe, and Everything, the third book of Douglas Adams’ whimsical Hitchhiker fantasy trilogy, cosmic wayfarer Ford Prefect describes how an object, even a large object, could effectively be rendered invisible to the general populace by surrounding it with an “SEP field” that causes would-be observers to avoid recognizing Somebody Else’s Problem. “An SEP,” Ford helpfully explains, “is something we can’t see, or don’t see, or our brain doesn’t let us see, because we think that it’s somebody else’s problem.”

If we were to reinterpret SEP to stand for “Somebody Else’s Processing,” we would be well on the way to a definition of cloud computing.

The term “cloud” comes from the engineering practice of drawing a cloud in a schematic to represent an external resource that the engineer’s design will interact with — a part of the workflow that he or she will assume is working but that is not part of that specific design. For example, a processor designer might draw a cloud to represent a memory system, with arrows indicating the flow of data in and out of the memory cloud. Cloud computing takes this concept to an organizational level; entire sections of IT workflows can now be virtualized into resources that are someone else’s concern.

Cloud computing is therefore a new instantiation of distributed computing. It is built on grid computing concepts and technology and further enabled by Internet technologies for access. Cloud computing is the delivery of some part of an IT workflow — such as computational cycles, data storage, or application hosting — using an Internet-style interface. This definition includes Web-immersed intranets as conduits for accessing private clouds.

Cloud computing is currently driven by business models that attempt to utilize or monetize unused resources. Grid, virtualization, and now cloud technologies have attempted to find and tap idle resources, thus reducing costs or generating revenue. The most interesting difference between cloud computing and earlier forms of distributed computing is that in developing ultra-scale computing centers, organizations such as Google and Amazon incidentally built out significant caches of occasionally idle computing resources that could be made generally available through the Internet. Furthermore these organizations found that they had developed significant skills in constructing and managing these resources, and economies of scale allowed them to purchase incremental equipment at relatively lower prices. The cloud was born as an effort to monetize those skills, economic advantages, and excess capacity.

This is important because from a business model point of view the cloud resources came into existence at no cost, with minimal incremental support requirements. The majority of the costs are born by the core businesses, and therefore, at least initially, customers of the excess capacity do not need to foot the bill for capital expenditures. Costs associated with staff training, facilities, and development are similarly already fully amortized and absorbed by the parent businesses. There is little more appealing than being able to sell something that you get for free.

With such an appealing proposition in play, many other organizations are scrambling to see whether they have an infrastructure — public or private — that can be exploited for gain through cloud computing. However, when significant excess capacity does not exist, or if it cannot be leveraged in a timely or reliable fashion, it is not clear what sustainable business models exist for cloud computing.

High-end, public cloud computing offerings represent a convergence of grid and Internet technologies, potentially enabling workable new business models. Smaller, private clouds are a technical evolution that expands the ease of use and deployment of grids in more organizations.

As cloud computing technologies mature, InterSect360 Research sees several possible business models that could evolve. Although we emphasize High Performance Computing in our analysis, cloud computing transcends HPC, and similar models will exist in non-HPC markets.

Utility Computing Models

Cloud computing provides a methodology for extending utility computing access models. Utility computing is not new; it has been touted for several years as a way for users to manage peaks in demand, extend capabilities, or reduce costs. Traditionally, limitations in network bandwidth, security issues, software licensing models, and repeatability of results have acted as barriers to adoption, and all of these still need to be addressed with cloud.

There are four major variations on the potential utility computing models with cloud:

Cycles On Demand

The cycles-on-demand model is the most basic approach to cloud computing. The cloud supplier provides hardware and basic software environments, and the user provides application software, application data, and any additional middleware required. In this case users are simply buying access to computer processors, which they provision and manage as needed in order to run their applications, after which the resources are “returned” to the cloud provider. Users are charged for the time the resources are in use, plus possibly some overhead costs. The demands are relatively low on the cloud provider, and relatively high on the user in terms of making sure there is effective utility generated by the rented resources.

Storage Clouds

The storage cloud model complements the cycles-on-demand model both in terms of operational approach — users buy disk space at a cloud providers facility — and in terms of providing a more complete solution for cycles users — a place to put programs and data between job runs. In the storage-on-demand approach the cloud is used:

  • As the final (archival) stage in hierarchical storage management schemes (even if it is a two-level hierarchy: local disk and cloud). On the consumer side this is essentially the concept used for PC backup services.
     
  • A file-sharing buffer where users can place data that can be accessed at a later time by other users. This approach is at the heart of photo sharing sites, and arguably with social sites such as Facebook and LinkedIn. This same concept is also used for shared science databases in areas such as genomics and chemistry.

Software as a Service

Software as a service (SaaS) extends the basic cycles-on-demand model by providing application software within the cloud. This model addresses software licensing issues by bundling the software costs within the cloud processing costs. It also addresses software certification and results repeatability issues because the cloud provider controls both the hardware and software environment and can provide specific system images to users.

SaaS also has the advantages for providers of allowing them to sell services along with the software, and to use the cloud as demonstration platform for direct sales of software products. In addition, the user is able to turn much of the system administration task over to the provider. The major drawback to this strategy is that users generally run of a series of software packages as part of their overall R&D workflow, in such case data would need to be moved into and out of the cloud for specific stages of the workflow, or the cloud provider must support an end-to-end process.

Environment Hosting

Environmental hosting is the use of a service to support virtually all computational tasks, with servers, storage, and software all being maintained by a third party. This concept can include constructs such as platform as a service (PaaS) and infrastructure as a service (IaaS). Arguably environmental hosting in the cloud is an oxymoron, however, it represents the upper end of the utility computing spectrum and a logical destination of cloud strategies. This approach addresses software, result repeatability, and most networking issues by simply providing dedicated resources all in one (logical) place. It addresses many of the technical security issues, but not a consumer organization’s security problem of inserting a third party into the workflow process.

Cloud-Generated Markets

In addition to the models for those who would consume resources through the cloud, there are applications that are made possible by the combination of Internet communications and large computing resources. This is inclusive of the opportunities for organizations to become cloud computing service providers, either externally or internally. In addition, there is the potential for some secondary markets to be enabled by the adoption of cloud technologies.

Restructuring of Internet-Based Service Infrastructures

One of the most interesting aspects of cloud computing is that Internet companies with value-add and expertise in intellectual property or content (as opposed to purchasing, managing, and running computer hardware systems) could move their internal computing architecture to the cloud, while maintaining system management and operating control in-house. With this strategy an organization would move the bulk of its computing to the cloud keeping only what is necessary for communications and cloud management, in doing so they convert internal costs for systems, software, staff, space and power into usage fees in the cloud. Cloud technology and service providers facilitate and accelerate the industry’s evolution towards a network of interrelated specialty companies, as opposed to groups of organizations each performing the same set of infrastructure functions in house. The major issue potentially holding this model back would be cost; i.e., the level of premium users would be willing to pay for a service versus a do-it-yourself solution.

Personal Clouds

This strategy would replace personal computers with an advanced terminal that connected to a cloud utility that holds all of the user’s data and software. The advantage for users is that they would be relieved of the burden of purchasing, maintaining, and upgrading their personal systems. They would also have professional support for such task as system back-up and system security and would also be able to access their computing environment form any Web-connected device.

This strategy may represent the evolutionary future of the Internet, particularly as more devices become Web-enabled and the relationship between the Web and the personal computer is weakened by competing devices, such as smart phones. The main challenge to this model is overall bandwidth on the Internet. Side effects to such an evolution would replace the role of the operating system with a Web browser and whatever backend environment the cloud supplier chose to provide, also creating a new product class for Web terminals.

InterSect360 Research Analysis

We see cloud computing as part of the logical progression in distributed computing. It is not completely revolutionary, nor is it a panacea that will provide any service that can be imagined. The business models must be considered in terms of cost and control, barriers and benefits.

Of all the cloud business models, InterSect360 Research believes that SaaS has the highest potential for success within HPC. It addresses several of the major dampening factors associated with cloud and provides additional revenue opportunities in the services arena. It also targets industrial users, who would be the most likely to pay a premium for the product, without attempting to develop competing solutions. Furthermore companies can adopting SaaS models in cloud in a phased or tiered way, first proving the concept private clouds before giving themselves over to public or hybrid models. (This same phenomenon persists with private and public grids today.)

Organizations that have experience with the software and in house operations may look to SaaS options for peak load management and capacity extension. However, we believe the greater opportunity is for selling packaged cloud computing, software, and start-up services to companies testing HPC solutions. Our research indicates that there are major start-up barriers to using HPC solutions among small and medium companies. These barriers include finding the expertise for the creation of the organization’s first scalable digital models.

The major barrier for SaaS adoption in HPC is the fragmentation of the applications software sector of the industry. The boutique nature of the opportunity may indicate there is not sufficient volume to merit the ISV’s investment to create and market cloud-enable versions of their applications. Interestingly, in a recursive manner, small SaaS providers could theoretically tap into larger cycles-on-demand cloud providers to supply the computing resources.

Similarly, implementation of environment hosting within current cloud environments for HPC organizations would currently entail significant amounts of effort by the user organization to set up and manage storage and software environments. It would also be limited by software licensing issues for industrial users in particular. Thus market opportunities for this option are very limited at this time. That said, a small organization could conceivably do all its computing in the cloud, keeping all its data on cloud storage system, using only internally developed, open-source, or SaaS software, and trusting in small size as part of a herd to provide security.

Finally, we note that Web-based software services are not new to the market; they currently range from income tax preparation services to on-line gaming companies. SaaS fits into cloud markets based on the concept of work being sent to outside party and results returned, without the sender having knowledge of exactly how those results are generated. For some users, SaaS may inherently make sense. Ultimately the best way to help users adopt HPC applications may be to make them Somebody Else’s Problem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information about the upc Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascal Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This