Cloud Computing Opportunities in HPC

By Christopher G. Willard, Ph.D., Addison Snell, Laura Segervall

November 2, 2009

This article is excerpted from “Cloud Opportunities in HPC: Market Taxonomy,” published by InterSect360 Research. The full article was distributed to subscribers of the InterSect360 market advisory service and can also be obtained by contacting sales@intersect360.com.

In Life, the Universe, and Everything, the third book of Douglas Adams’ whimsical Hitchhiker fantasy trilogy, cosmic wayfarer Ford Prefect describes how an object, even a large object, could effectively be rendered invisible to the general populace by surrounding it with an “SEP field” that causes would-be observers to avoid recognizing Somebody Else’s Problem. “An SEP,” Ford helpfully explains, “is something we can’t see, or don’t see, or our brain doesn’t let us see, because we think that it’s somebody else’s problem.”

If we were to reinterpret SEP to stand for “Somebody Else’s Processing,” we would be well on the way to a definition of cloud computing.

The term “cloud” comes from the engineering practice of drawing a cloud in a schematic to represent an external resource that the engineer’s design will interact with — a part of the workflow that he or she will assume is working but that is not part of that specific design. For example, a processor designer might draw a cloud to represent a memory system, with arrows indicating the flow of data in and out of the memory cloud. Cloud computing takes this concept to an organizational level; entire sections of IT workflows can now be virtualized into resources that are someone else’s concern.

Cloud computing is therefore a new instantiation of distributed computing. It is built on grid computing concepts and technology and further enabled by Internet technologies for access. Cloud computing is the delivery of some part of an IT workflow — such as computational cycles, data storage, or application hosting — using an Internet-style interface. This definition includes Web-immersed intranets as conduits for accessing private clouds.

Cloud computing is currently driven by business models that attempt to utilize or monetize unused resources. Grid, virtualization, and now cloud technologies have attempted to find and tap idle resources, thus reducing costs or generating revenue. The most interesting difference between cloud computing and earlier forms of distributed computing is that in developing ultra-scale computing centers, organizations such as Google and Amazon incidentally built out significant caches of occasionally idle computing resources that could be made generally available through the Internet. Furthermore these organizations found that they had developed significant skills in constructing and managing these resources, and economies of scale allowed them to purchase incremental equipment at relatively lower prices. The cloud was born as an effort to monetize those skills, economic advantages, and excess capacity.

This is important because from a business model point of view the cloud resources came into existence at no cost, with minimal incremental support requirements. The majority of the costs are born by the core businesses, and therefore, at least initially, customers of the excess capacity do not need to foot the bill for capital expenditures. Costs associated with staff training, facilities, and development are similarly already fully amortized and absorbed by the parent businesses. There is little more appealing than being able to sell something that you get for free.

With such an appealing proposition in play, many other organizations are scrambling to see whether they have an infrastructure — public or private — that can be exploited for gain through cloud computing. However, when significant excess capacity does not exist, or if it cannot be leveraged in a timely or reliable fashion, it is not clear what sustainable business models exist for cloud computing.

High-end, public cloud computing offerings represent a convergence of grid and Internet technologies, potentially enabling workable new business models. Smaller, private clouds are a technical evolution that expands the ease of use and deployment of grids in more organizations.

As cloud computing technologies mature, InterSect360 Research sees several possible business models that could evolve. Although we emphasize High Performance Computing in our analysis, cloud computing transcends HPC, and similar models will exist in non-HPC markets.

Utility Computing Models

Cloud computing provides a methodology for extending utility computing access models. Utility computing is not new; it has been touted for several years as a way for users to manage peaks in demand, extend capabilities, or reduce costs. Traditionally, limitations in network bandwidth, security issues, software licensing models, and repeatability of results have acted as barriers to adoption, and all of these still need to be addressed with cloud.

There are four major variations on the potential utility computing models with cloud:

Cycles On Demand

The cycles-on-demand model is the most basic approach to cloud computing. The cloud supplier provides hardware and basic software environments, and the user provides application software, application data, and any additional middleware required. In this case users are simply buying access to computer processors, which they provision and manage as needed in order to run their applications, after which the resources are “returned” to the cloud provider. Users are charged for the time the resources are in use, plus possibly some overhead costs. The demands are relatively low on the cloud provider, and relatively high on the user in terms of making sure there is effective utility generated by the rented resources.

Storage Clouds

The storage cloud model complements the cycles-on-demand model both in terms of operational approach — users buy disk space at a cloud providers facility — and in terms of providing a more complete solution for cycles users — a place to put programs and data between job runs. In the storage-on-demand approach the cloud is used:

  • As the final (archival) stage in hierarchical storage management schemes (even if it is a two-level hierarchy: local disk and cloud). On the consumer side this is essentially the concept used for PC backup services.
     
  • A file-sharing buffer where users can place data that can be accessed at a later time by other users. This approach is at the heart of photo sharing sites, and arguably with social sites such as Facebook and LinkedIn. This same concept is also used for shared science databases in areas such as genomics and chemistry.

Software as a Service

Software as a service (SaaS) extends the basic cycles-on-demand model by providing application software within the cloud. This model addresses software licensing issues by bundling the software costs within the cloud processing costs. It also addresses software certification and results repeatability issues because the cloud provider controls both the hardware and software environment and can provide specific system images to users.

SaaS also has the advantages for providers of allowing them to sell services along with the software, and to use the cloud as demonstration platform for direct sales of software products. In addition, the user is able to turn much of the system administration task over to the provider. The major drawback to this strategy is that users generally run of a series of software packages as part of their overall R&D workflow, in such case data would need to be moved into and out of the cloud for specific stages of the workflow, or the cloud provider must support an end-to-end process.

Environment Hosting

Environmental hosting is the use of a service to support virtually all computational tasks, with servers, storage, and software all being maintained by a third party. This concept can include constructs such as platform as a service (PaaS) and infrastructure as a service (IaaS). Arguably environmental hosting in the cloud is an oxymoron, however, it represents the upper end of the utility computing spectrum and a logical destination of cloud strategies. This approach addresses software, result repeatability, and most networking issues by simply providing dedicated resources all in one (logical) place. It addresses many of the technical security issues, but not a consumer organization’s security problem of inserting a third party into the workflow process.

Cloud-Generated Markets

In addition to the models for those who would consume resources through the cloud, there are applications that are made possible by the combination of Internet communications and large computing resources. This is inclusive of the opportunities for organizations to become cloud computing service providers, either externally or internally. In addition, there is the potential for some secondary markets to be enabled by the adoption of cloud technologies.

Restructuring of Internet-Based Service Infrastructures

One of the most interesting aspects of cloud computing is that Internet companies with value-add and expertise in intellectual property or content (as opposed to purchasing, managing, and running computer hardware systems) could move their internal computing architecture to the cloud, while maintaining system management and operating control in-house. With this strategy an organization would move the bulk of its computing to the cloud keeping only what is necessary for communications and cloud management, in doing so they convert internal costs for systems, software, staff, space and power into usage fees in the cloud. Cloud technology and service providers facilitate and accelerate the industry’s evolution towards a network of interrelated specialty companies, as opposed to groups of organizations each performing the same set of infrastructure functions in house. The major issue potentially holding this model back would be cost; i.e., the level of premium users would be willing to pay for a service versus a do-it-yourself solution.

Personal Clouds

This strategy would replace personal computers with an advanced terminal that connected to a cloud utility that holds all of the user’s data and software. The advantage for users is that they would be relieved of the burden of purchasing, maintaining, and upgrading their personal systems. They would also have professional support for such task as system back-up and system security and would also be able to access their computing environment form any Web-connected device.

This strategy may represent the evolutionary future of the Internet, particularly as more devices become Web-enabled and the relationship between the Web and the personal computer is weakened by competing devices, such as smart phones. The main challenge to this model is overall bandwidth on the Internet. Side effects to such an evolution would replace the role of the operating system with a Web browser and whatever backend environment the cloud supplier chose to provide, also creating a new product class for Web terminals.

InterSect360 Research Analysis

We see cloud computing as part of the logical progression in distributed computing. It is not completely revolutionary, nor is it a panacea that will provide any service that can be imagined. The business models must be considered in terms of cost and control, barriers and benefits.

Of all the cloud business models, InterSect360 Research believes that SaaS has the highest potential for success within HPC. It addresses several of the major dampening factors associated with cloud and provides additional revenue opportunities in the services arena. It also targets industrial users, who would be the most likely to pay a premium for the product, without attempting to develop competing solutions. Furthermore companies can adopting SaaS models in cloud in a phased or tiered way, first proving the concept private clouds before giving themselves over to public or hybrid models. (This same phenomenon persists with private and public grids today.)

Organizations that have experience with the software and in house operations may look to SaaS options for peak load management and capacity extension. However, we believe the greater opportunity is for selling packaged cloud computing, software, and start-up services to companies testing HPC solutions. Our research indicates that there are major start-up barriers to using HPC solutions among small and medium companies. These barriers include finding the expertise for the creation of the organization’s first scalable digital models.

The major barrier for SaaS adoption in HPC is the fragmentation of the applications software sector of the industry. The boutique nature of the opportunity may indicate there is not sufficient volume to merit the ISV’s investment to create and market cloud-enable versions of their applications. Interestingly, in a recursive manner, small SaaS providers could theoretically tap into larger cycles-on-demand cloud providers to supply the computing resources.

Similarly, implementation of environment hosting within current cloud environments for HPC organizations would currently entail significant amounts of effort by the user organization to set up and manage storage and software environments. It would also be limited by software licensing issues for industrial users in particular. Thus market opportunities for this option are very limited at this time. That said, a small organization could conceivably do all its computing in the cloud, keeping all its data on cloud storage system, using only internally developed, open-source, or SaaS software, and trusting in small size as part of a herd to provide security.

Finally, we note that Web-based software services are not new to the market; they currently range from income tax preparation services to on-line gaming companies. SaaS fits into cloud markets based on the concept of work being sent to outside party and results returned, without the sender having knowledge of exactly how those results are generated. For some users, SaaS may inherently make sense. Ultimately the best way to help users adopt HPC applications may be to make them Somebody Else’s Problem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This