Cloud Computing Opportunities in HPC

By Christopher G. Willard, Ph.D., Addison Snell, Laura Segervall

November 2, 2009

This article is excerpted from “Cloud Opportunities in HPC: Market Taxonomy,” published by InterSect360 Research. The full article was distributed to subscribers of the InterSect360 market advisory service and can also be obtained by contacting [email protected].

In Life, the Universe, and Everything, the third book of Douglas Adams’ whimsical Hitchhiker fantasy trilogy, cosmic wayfarer Ford Prefect describes how an object, even a large object, could effectively be rendered invisible to the general populace by surrounding it with an “SEP field” that causes would-be observers to avoid recognizing Somebody Else’s Problem. “An SEP,” Ford helpfully explains, “is something we can’t see, or don’t see, or our brain doesn’t let us see, because we think that it’s somebody else’s problem.”

If we were to reinterpret SEP to stand for “Somebody Else’s Processing,” we would be well on the way to a definition of cloud computing.

The term “cloud” comes from the engineering practice of drawing a cloud in a schematic to represent an external resource that the engineer’s design will interact with — a part of the workflow that he or she will assume is working but that is not part of that specific design. For example, a processor designer might draw a cloud to represent a memory system, with arrows indicating the flow of data in and out of the memory cloud. Cloud computing takes this concept to an organizational level; entire sections of IT workflows can now be virtualized into resources that are someone else’s concern.

Cloud computing is therefore a new instantiation of distributed computing. It is built on grid computing concepts and technology and further enabled by Internet technologies for access. Cloud computing is the delivery of some part of an IT workflow — such as computational cycles, data storage, or application hosting — using an Internet-style interface. This definition includes Web-immersed intranets as conduits for accessing private clouds.

Cloud computing is currently driven by business models that attempt to utilize or monetize unused resources. Grid, virtualization, and now cloud technologies have attempted to find and tap idle resources, thus reducing costs or generating revenue. The most interesting difference between cloud computing and earlier forms of distributed computing is that in developing ultra-scale computing centers, organizations such as Google and Amazon incidentally built out significant caches of occasionally idle computing resources that could be made generally available through the Internet. Furthermore these organizations found that they had developed significant skills in constructing and managing these resources, and economies of scale allowed them to purchase incremental equipment at relatively lower prices. The cloud was born as an effort to monetize those skills, economic advantages, and excess capacity.

This is important because from a business model point of view the cloud resources came into existence at no cost, with minimal incremental support requirements. The majority of the costs are born by the core businesses, and therefore, at least initially, customers of the excess capacity do not need to foot the bill for capital expenditures. Costs associated with staff training, facilities, and development are similarly already fully amortized and absorbed by the parent businesses. There is little more appealing than being able to sell something that you get for free.

With such an appealing proposition in play, many other organizations are scrambling to see whether they have an infrastructure — public or private — that can be exploited for gain through cloud computing. However, when significant excess capacity does not exist, or if it cannot be leveraged in a timely or reliable fashion, it is not clear what sustainable business models exist for cloud computing.

High-end, public cloud computing offerings represent a convergence of grid and Internet technologies, potentially enabling workable new business models. Smaller, private clouds are a technical evolution that expands the ease of use and deployment of grids in more organizations.

As cloud computing technologies mature, InterSect360 Research sees several possible business models that could evolve. Although we emphasize High Performance Computing in our analysis, cloud computing transcends HPC, and similar models will exist in non-HPC markets.

Utility Computing Models

Cloud computing provides a methodology for extending utility computing access models. Utility computing is not new; it has been touted for several years as a way for users to manage peaks in demand, extend capabilities, or reduce costs. Traditionally, limitations in network bandwidth, security issues, software licensing models, and repeatability of results have acted as barriers to adoption, and all of these still need to be addressed with cloud.

There are four major variations on the potential utility computing models with cloud:

Cycles On Demand

The cycles-on-demand model is the most basic approach to cloud computing. The cloud supplier provides hardware and basic software environments, and the user provides application software, application data, and any additional middleware required. In this case users are simply buying access to computer processors, which they provision and manage as needed in order to run their applications, after which the resources are “returned” to the cloud provider. Users are charged for the time the resources are in use, plus possibly some overhead costs. The demands are relatively low on the cloud provider, and relatively high on the user in terms of making sure there is effective utility generated by the rented resources.

Storage Clouds

The storage cloud model complements the cycles-on-demand model both in terms of operational approach — users buy disk space at a cloud providers facility — and in terms of providing a more complete solution for cycles users — a place to put programs and data between job runs. In the storage-on-demand approach the cloud is used:

  • As the final (archival) stage in hierarchical storage management schemes (even if it is a two-level hierarchy: local disk and cloud). On the consumer side this is essentially the concept used for PC backup services.
     
  • A file-sharing buffer where users can place data that can be accessed at a later time by other users. This approach is at the heart of photo sharing sites, and arguably with social sites such as Facebook and LinkedIn. This same concept is also used for shared science databases in areas such as genomics and chemistry.

Software as a Service

Software as a service (SaaS) extends the basic cycles-on-demand model by providing application software within the cloud. This model addresses software licensing issues by bundling the software costs within the cloud processing costs. It also addresses software certification and results repeatability issues because the cloud provider controls both the hardware and software environment and can provide specific system images to users.

SaaS also has the advantages for providers of allowing them to sell services along with the software, and to use the cloud as demonstration platform for direct sales of software products. In addition, the user is able to turn much of the system administration task over to the provider. The major drawback to this strategy is that users generally run of a series of software packages as part of their overall R&D workflow, in such case data would need to be moved into and out of the cloud for specific stages of the workflow, or the cloud provider must support an end-to-end process.

Environment Hosting

Environmental hosting is the use of a service to support virtually all computational tasks, with servers, storage, and software all being maintained by a third party. This concept can include constructs such as platform as a service (PaaS) and infrastructure as a service (IaaS). Arguably environmental hosting in the cloud is an oxymoron, however, it represents the upper end of the utility computing spectrum and a logical destination of cloud strategies. This approach addresses software, result repeatability, and most networking issues by simply providing dedicated resources all in one (logical) place. It addresses many of the technical security issues, but not a consumer organization’s security problem of inserting a third party into the workflow process.

Cloud-Generated Markets

In addition to the models for those who would consume resources through the cloud, there are applications that are made possible by the combination of Internet communications and large computing resources. This is inclusive of the opportunities for organizations to become cloud computing service providers, either externally or internally. In addition, there is the potential for some secondary markets to be enabled by the adoption of cloud technologies.

Restructuring of Internet-Based Service Infrastructures

One of the most interesting aspects of cloud computing is that Internet companies with value-add and expertise in intellectual property or content (as opposed to purchasing, managing, and running computer hardware systems) could move their internal computing architecture to the cloud, while maintaining system management and operating control in-house. With this strategy an organization would move the bulk of its computing to the cloud keeping only what is necessary for communications and cloud management, in doing so they convert internal costs for systems, software, staff, space and power into usage fees in the cloud. Cloud technology and service providers facilitate and accelerate the industry’s evolution towards a network of interrelated specialty companies, as opposed to groups of organizations each performing the same set of infrastructure functions in house. The major issue potentially holding this model back would be cost; i.e., the level of premium users would be willing to pay for a service versus a do-it-yourself solution.

Personal Clouds

This strategy would replace personal computers with an advanced terminal that connected to a cloud utility that holds all of the user’s data and software. The advantage for users is that they would be relieved of the burden of purchasing, maintaining, and upgrading their personal systems. They would also have professional support for such task as system back-up and system security and would also be able to access their computing environment form any Web-connected device.

This strategy may represent the evolutionary future of the Internet, particularly as more devices become Web-enabled and the relationship between the Web and the personal computer is weakened by competing devices, such as smart phones. The main challenge to this model is overall bandwidth on the Internet. Side effects to such an evolution would replace the role of the operating system with a Web browser and whatever backend environment the cloud supplier chose to provide, also creating a new product class for Web terminals.

InterSect360 Research Analysis

We see cloud computing as part of the logical progression in distributed computing. It is not completely revolutionary, nor is it a panacea that will provide any service that can be imagined. The business models must be considered in terms of cost and control, barriers and benefits.

Of all the cloud business models, InterSect360 Research believes that SaaS has the highest potential for success within HPC. It addresses several of the major dampening factors associated with cloud and provides additional revenue opportunities in the services arena. It also targets industrial users, who would be the most likely to pay a premium for the product, without attempting to develop competing solutions. Furthermore companies can adopting SaaS models in cloud in a phased or tiered way, first proving the concept private clouds before giving themselves over to public or hybrid models. (This same phenomenon persists with private and public grids today.)

Organizations that have experience with the software and in house operations may look to SaaS options for peak load management and capacity extension. However, we believe the greater opportunity is for selling packaged cloud computing, software, and start-up services to companies testing HPC solutions. Our research indicates that there are major start-up barriers to using HPC solutions among small and medium companies. These barriers include finding the expertise for the creation of the organization’s first scalable digital models.

The major barrier for SaaS adoption in HPC is the fragmentation of the applications software sector of the industry. The boutique nature of the opportunity may indicate there is not sufficient volume to merit the ISV’s investment to create and market cloud-enable versions of their applications. Interestingly, in a recursive manner, small SaaS providers could theoretically tap into larger cycles-on-demand cloud providers to supply the computing resources.

Similarly, implementation of environment hosting within current cloud environments for HPC organizations would currently entail significant amounts of effort by the user organization to set up and manage storage and software environments. It would also be limited by software licensing issues for industrial users in particular. Thus market opportunities for this option are very limited at this time. That said, a small organization could conceivably do all its computing in the cloud, keeping all its data on cloud storage system, using only internally developed, open-source, or SaaS software, and trusting in small size as part of a herd to provide security.

Finally, we note that Web-based software services are not new to the market; they currently range from income tax preparation services to on-line gaming companies. SaaS fits into cloud markets based on the concept of work being sent to outside party and results returned, without the sender having knowledge of exactly how those results are generated. For some users, SaaS may inherently make sense. Ultimately the best way to help users adopt HPC applications may be to make them Somebody Else’s Problem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This