Grid Computing Done Right

By John Barr

November 2, 2009

Writing and implementing high performance computing applications is all about efficiency, parallelism, scalability, cache optimizations and making best use of whatever resources are available — be they multicore processors or application accelerators, such as FPGAs or GPUs. HPC applications have been developed for, and successfully run on, grids for many years now.

HPC on Grid

A good example of a number of different components of HPC applications can be seen in the processing of data from CERN’s Large Hadron Collider (LHC). The LHC is a gigantic scientific instrument (with a circumference of over 26 kilometres), buried underground near Geneva, where beams of subatomic particles — called Hadrons, either protons or lead ions — are accelerated in opposite directions and smashed into each other at 0.999997828 the speed of light. Its goal is to develop an understanding of what happened in the first 10-12 of a second at the start of the universe after the Big Bang, which will in turn confirm the existence of the Higgs boson, help to explain dark matter, dark energy, anti-matter, and perhaps the fundamental nature of matters itself.

Data is collected by a number of “experiments.” each of which is a large and very delicate collection of sensors able to capture the side effects caused by exotic, short lived particles that result from the particle collisions. When accelerated to full speed, the bunches of particles pass each other 40 million times a second, each bunch contains 10^11 particles, resulting in one billion collision events being detected every second. This data is first filtered by a system build from custom ASIC and FPGA devices. It is then processed by a 1,000 processor compute farm, and the filtering is completed by a 3,400 processor farm. After the data has been reduced by a factor of 180,000, it still generates 3,200 terabytes of data a year. And the HPC processing undertaken to reduce the data volume has hardly scratched the surface of what happens next.

Ten major compute sites around the world comprising many tens of thousands of processors (and many smaller facilities) are then put to work to interpret what happened during each “event.” The processing is handled, and the data distribution managed, by the LHC Grid, which is based on grid middleware called gLite that was developed by the major European project, Enabling Grids for E-sciencE (EGEE). High performance is achieved at every stage because the programs have been developed with a detailed knowledge and understanding of the grid, cluster or FPGA that they target.

From Grid to Cloud

Grid computing isn’t dead, but long live cloud computing. As far as early-adopter end users in our 451 ICE program are concerned, cloud computing is now seen very much as the logical endpoint for combined grid, utility, virtualization and automation strategies. Indeed, enterprise grid users see grid, utility and cloud computing as a continuum: cloud computing is grid computing done right; clouds are a flexible pool, whereas grids have a fixed resource pool; clouds provision services, whereas grids are provisioning servers; clouds are business, and grids are science. And so the comparisons go on, but through cloud computing, grids now appear to be at the point of meeting some of their promise.

One obvious way to regard cloud computing is as the new marketing-friendly name for utility computing, sprinkled with a little Internet pixie dust. In many respects, its aspirations match the original aspirations of utility computing — the ability to turn on computing power like a tap and pay on a per-drink basis. “Utility” is a useful metaphor, but it’s ambiguous because IT is simply not as fungible as electrical power, for example. The term never really took off. Grid computing, in the meantime, has been hung up on the pursuit of interoperability and the complexity of standardization. Taking the science out of grids has proved to be fairly intractable for all but high performance computing and specialist application tasks.

Clouds usefully abstract away the complexity of grids and the ambiguity of utility computing, and they have been adopted rapidly and widely. Since then everyone has been desperately trying to work out what cloud computing means and how it differs from utility computing. It doesn’t, really. Cloud computing is utility computing 2.0 with some refinements, principally, that it is delivered in ways we think are very likely to catch on.

But as cloud abstracts away the complexity, it also abstracts away visibility of the detail underlying execution platform. And without a deep understanding of how to optimize for the target platform, high performance computing becomes, well, just computing.

Building Applications

Human readable programs are translated into ones that can be executed on a computer by a program called a compiler. A compiler’s first step is that of lexical analysis, which converts a program into its logical components (i.e., language keywords, operators, numbers and variables). Next, the syntax analysis phase checks that the program complies with the grammar rules of the languages. The final two phases of optimization and code generation are often tightly linked so as to be one and the same thing (although some generic optimizations such as common sub-expression elimination are independent of code generation). The more the compiler knows about the target systems, the more sophisticated the optimizations it can perform, and the higher the performance of the resulting program.

But if a program is running in the cloud, the compiler doesn’t know any detail of the target architecture, and so must make lowest common denominator assumptions such as an x86 system with up to 8 cores. But much higher performance may be achieved by compiling for many more cores, or an MPI-based cluster, or GPU or FPGA.

Such technology has become a hot commodity. Google bought PeakStream, Microsoft bought the assets of Interactive Supercomputing and Intel bought RapidMind and Cilk Arts. So the major IT companies are buying up this parallel processing expertise.

Conclusion

Multicore causes mainstream IT a problem in that most applications will struggle to scale as fast as new multicore systems do, and most programmers are not parallel processing specialists. And this problem is magnified many times over when running HPC applications in the cloud, since even if the programmer and the compilers being used could do a perfect job of optimizing and parallelizing an application, the detail target architecture is unknown.

Is there a solution? In the long term new programming paradigms or languages are required, perhaps with a two-stage compilation process that compiles to an intermediate language but postpones the final optimization and code generation until the target system is known. And no, I don’t think Java is the answer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This