Grid Computing Done Right

By John Barr

November 2, 2009

Writing and implementing high performance computing applications is all about efficiency, parallelism, scalability, cache optimizations and making best use of whatever resources are available — be they multicore processors or application accelerators, such as FPGAs or GPUs. HPC applications have been developed for, and successfully run on, grids for many years now.

HPC on Grid

A good example of a number of different components of HPC applications can be seen in the processing of data from CERN’s Large Hadron Collider (LHC). The LHC is a gigantic scientific instrument (with a circumference of over 26 kilometres), buried underground near Geneva, where beams of subatomic particles — called Hadrons, either protons or lead ions — are accelerated in opposite directions and smashed into each other at 0.999997828 the speed of light. Its goal is to develop an understanding of what happened in the first 10-12 of a second at the start of the universe after the Big Bang, which will in turn confirm the existence of the Higgs boson, help to explain dark matter, dark energy, anti-matter, and perhaps the fundamental nature of matters itself.

Data is collected by a number of “experiments.” each of which is a large and very delicate collection of sensors able to capture the side effects caused by exotic, short lived particles that result from the particle collisions. When accelerated to full speed, the bunches of particles pass each other 40 million times a second, each bunch contains 10^11 particles, resulting in one billion collision events being detected every second. This data is first filtered by a system build from custom ASIC and FPGA devices. It is then processed by a 1,000 processor compute farm, and the filtering is completed by a 3,400 processor farm. After the data has been reduced by a factor of 180,000, it still generates 3,200 terabytes of data a year. And the HPC processing undertaken to reduce the data volume has hardly scratched the surface of what happens next.

Ten major compute sites around the world comprising many tens of thousands of processors (and many smaller facilities) are then put to work to interpret what happened during each “event.” The processing is handled, and the data distribution managed, by the LHC Grid, which is based on grid middleware called gLite that was developed by the major European project, Enabling Grids for E-sciencE (EGEE). High performance is achieved at every stage because the programs have been developed with a detailed knowledge and understanding of the grid, cluster or FPGA that they target.

From Grid to Cloud

Grid computing isn’t dead, but long live cloud computing. As far as early-adopter end users in our 451 ICE program are concerned, cloud computing is now seen very much as the logical endpoint for combined grid, utility, virtualization and automation strategies. Indeed, enterprise grid users see grid, utility and cloud computing as a continuum: cloud computing is grid computing done right; clouds are a flexible pool, whereas grids have a fixed resource pool; clouds provision services, whereas grids are provisioning servers; clouds are business, and grids are science. And so the comparisons go on, but through cloud computing, grids now appear to be at the point of meeting some of their promise.

One obvious way to regard cloud computing is as the new marketing-friendly name for utility computing, sprinkled with a little Internet pixie dust. In many respects, its aspirations match the original aspirations of utility computing — the ability to turn on computing power like a tap and pay on a per-drink basis. “Utility” is a useful metaphor, but it’s ambiguous because IT is simply not as fungible as electrical power, for example. The term never really took off. Grid computing, in the meantime, has been hung up on the pursuit of interoperability and the complexity of standardization. Taking the science out of grids has proved to be fairly intractable for all but high performance computing and specialist application tasks.

Clouds usefully abstract away the complexity of grids and the ambiguity of utility computing, and they have been adopted rapidly and widely. Since then everyone has been desperately trying to work out what cloud computing means and how it differs from utility computing. It doesn’t, really. Cloud computing is utility computing 2.0 with some refinements, principally, that it is delivered in ways we think are very likely to catch on.

But as cloud abstracts away the complexity, it also abstracts away visibility of the detail underlying execution platform. And without a deep understanding of how to optimize for the target platform, high performance computing becomes, well, just computing.

Building Applications

Human readable programs are translated into ones that can be executed on a computer by a program called a compiler. A compiler’s first step is that of lexical analysis, which converts a program into its logical components (i.e., language keywords, operators, numbers and variables). Next, the syntax analysis phase checks that the program complies with the grammar rules of the languages. The final two phases of optimization and code generation are often tightly linked so as to be one and the same thing (although some generic optimizations such as common sub-expression elimination are independent of code generation). The more the compiler knows about the target systems, the more sophisticated the optimizations it can perform, and the higher the performance of the resulting program.

But if a program is running in the cloud, the compiler doesn’t know any detail of the target architecture, and so must make lowest common denominator assumptions such as an x86 system with up to 8 cores. But much higher performance may be achieved by compiling for many more cores, or an MPI-based cluster, or GPU or FPGA.

Such technology has become a hot commodity. Google bought PeakStream, Microsoft bought the assets of Interactive Supercomputing and Intel bought RapidMind and Cilk Arts. So the major IT companies are buying up this parallel processing expertise.

Conclusion

Multicore causes mainstream IT a problem in that most applications will struggle to scale as fast as new multicore systems do, and most programmers are not parallel processing specialists. And this problem is magnified many times over when running HPC applications in the cloud, since even if the programmer and the compilers being used could do a perfect job of optimizing and parallelizing an application, the detail target architecture is unknown.

Is there a solution? In the long term new programming paradigms or languages are required, perhaps with a two-stage compilation process that compiles to an intermediate language but postpones the final optimization and code generation until the target system is known. And no, I don’t think Java is the answer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This