Grids or Clouds for HPC?

By Wolfgang Gentzsch

November 2, 2009

Time and again, people ask questions like “Will HPC move to the cloud?” or “Now that cloud computing is accepted, are grids dead?” or even “Should I now build my grid in the cloud?” Despite all the promising developments in the grid and cloud computing space, and the avalanche of publications and talks on this subject, many people still seem to be confused and hesitant to take the next step. I think there a number of issues driving this uncertainty.

Grids didn’t keep all their promises

Grids did not evolve (as some of us originally thought) into the next fundamental IT infrastructure for everything and for everybody. Because of the diversity of computing environments we had to develop different middleware stacks (department, enterprise, global, compute, data, sensors, instruments, etc.), and had to face different usage models with different benefits. Enterprise grids were (and are) providing better resource utilization and business flexibility, while global grids are best suited for complex R&D application collaboration with resource sharing. For enterprise usage, setting up and operating grids was often complicated. For researchers this characteristic was seen to be a necessary evil. Implementing complex applications on HPC systems has never been easy. So what.

Grid: the way station to the cloud

After 40 years of dealing with HPC, grid computing was indeed the next big thing for the grand challenge, big-science researcher, while for the enterprise CIO, the grid was a way station on its way to the cloud model. For the enterprise today, clouds are providing all the missing pieces: easy to use, economies of scale, business elasticity up and down, and pay-as you go (thus getting rid of some CapEx). And in cases where security matters, there is always the private cloud. In more complex enterprise environments, with applications running under different policies, private clouds can easily connect to public clouds — and vice versa — into a hybrid cloud infrastructure, to balance security with efficiency.

Different policies, what does that mean?

No application job is alike. Jobs differ by priority, strategic importance, deadline, budget, IP and licenses. In addition, the nature of the code often necessitates a specific computer architecture, operating system, memory, and other resources. These important differentiating factors strongly influence where and when a job is running. For any new type of job, a set of specific requirements decide on the set of specific policies that have to be defined and programmed, such that any of these jobs will run just according to these policies. Ideally, this is guaranteed by a dynamic resource broker that controls submission to grid or cloud resources, be they local or global, private or public.

Grids or clouds?

One important question is still open: how do I find out, and then tell the resource broker, whether my application should run on the grid or in the cloud? The answer, among others, depends on the algorithmic structure of the compute-intensive part of the program, which might be intolerant of high latency and low bandwidth. This has been observed with benchmark results. The performance limitations are exhibited mainly by parallel applications with tightly-coupled, data-intensive inter-process communication, running on hundreds or even thousands of processors or cores.

The good news is, however, that many HPC applications do not require high bandwidth and low latency. Examples are parameter studies often seen in science and engineering, with one and the same application executed for many parameters, resulting in many independent jobs, such as analyzing the data from a particle physics collider, identifying the solution parameter in optimization, ensemble runs to quantify climate model uncertainties, identifying potential drug targets via screening a database of ligand structures, studying economic model sensitivity to parameters, and analyzing different materials and their resistance in crash tests, to name just a few.

A Grid in the cloud 

One great example of a project that has built a grid in the cloud is Gaia, a European Space Agency funded mission which aims to monitor one billion stars. Amazon Machine Images (AMIs) were configured for the Oracle database grid and processing software (AGIS). The result is an Oracle grid running inside the Amazon Elastic Compute Cloud (EC2). To process five years of data for 2 million stars, 24 iterations of 100 minutes each translates into 40 hours of 20 EC2 CPU instances. Benefits include reduced costs (50 percent compared to the in-house solution) and massive scalability on demand without having to invest in new
infrastructure or train new personnel. And only a single line of source code was changed in order to get it to run in the cloud.

HPC needs grids and clouds

According to the DEISA Extreme Computing Initiative (DECI), there are still plenty of grand challenge science and engineering applications that can only run effectively on the largest and most expensive supercomputers. In DEISA, a European HPC grid, also called the HPC Ecosystem, is made up of 11-teraflops nodes.

Today, nobody would build an HPC cloud for these particular applications. It simply wouldn’t be a profitable business, the “market” (i.e., the HPC users) is far too small and thus lacks economy of scale. In some specific science application scenarios, with complex workflows of different tasks (nodes), a hybrid infrastructure might make sense: cloud capacity resources and HPC capability nodes, providing the best of both worlds.

About the Author

Wolfgang Gentzsch is Dissemination Advisor for the DEISA Distributed European Initiative for Supercomputing Applications. He is an adjunct professor of computer science at Duke University in Durham, and a visiting scientist at RENCI Renaissance Computing Institute at UNC Chapel Hill, both in North Carolina. From 2005 to 2007, he was the Chairman of the German D-Grid Initiative. Recently, he was Vice Chair of the e-Infrastructure Reflection Group e-IRG; Area Director of Major Grid Projects of the OGF Open Grid Forum Steering Group; and he is a member of the US President’s Council of Advisors for Science and Technology (PCAST-NIT).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI End Game: The Automation of All Work

June 29, 2017

Last week we reported from ISC on an emerging type of high performance system architecture that integrates HPC and HPA (High Performance Analytics) and incorporates, at its center, exabyte-scale memory capacity, surround Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms based on floating point (FP) numbers. Algorithms can definit Read more…

By James Reinders

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

Optimized HPC Solutions Driving Performance, Efficiency, and Scale

Technology is transforming nearly every human and business process, from driving business growth, to translating documents in real time, to enhancing decision-making in areas like financial services and scientific research. Read more…

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

AI End Game: The Automation of All Work

June 29, 2017

Last week we reported from ISC on an emerging type of high performance system architecture that integrates HPC and HPA (High Performance Analytics) and incorpor Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This