Grids or Clouds for HPC?

By Wolfgang Gentzsch

November 2, 2009

Time and again, people ask questions like “Will HPC move to the cloud?” or “Now that cloud computing is accepted, are grids dead?” or even “Should I now build my grid in the cloud?” Despite all the promising developments in the grid and cloud computing space, and the avalanche of publications and talks on this subject, many people still seem to be confused and hesitant to take the next step. I think there a number of issues driving this uncertainty.

Grids didn’t keep all their promises

Grids did not evolve (as some of us originally thought) into the next fundamental IT infrastructure for everything and for everybody. Because of the diversity of computing environments we had to develop different middleware stacks (department, enterprise, global, compute, data, sensors, instruments, etc.), and had to face different usage models with different benefits. Enterprise grids were (and are) providing better resource utilization and business flexibility, while global grids are best suited for complex R&D application collaboration with resource sharing. For enterprise usage, setting up and operating grids was often complicated. For researchers this characteristic was seen to be a necessary evil. Implementing complex applications on HPC systems has never been easy. So what.

Grid: the way station to the cloud

After 40 years of dealing with HPC, grid computing was indeed the next big thing for the grand challenge, big-science researcher, while for the enterprise CIO, the grid was a way station on its way to the cloud model. For the enterprise today, clouds are providing all the missing pieces: easy to use, economies of scale, business elasticity up and down, and pay-as you go (thus getting rid of some CapEx). And in cases where security matters, there is always the private cloud. In more complex enterprise environments, with applications running under different policies, private clouds can easily connect to public clouds — and vice versa — into a hybrid cloud infrastructure, to balance security with efficiency.

Different policies, what does that mean?

No application job is alike. Jobs differ by priority, strategic importance, deadline, budget, IP and licenses. In addition, the nature of the code often necessitates a specific computer architecture, operating system, memory, and other resources. These important differentiating factors strongly influence where and when a job is running. For any new type of job, a set of specific requirements decide on the set of specific policies that have to be defined and programmed, such that any of these jobs will run just according to these policies. Ideally, this is guaranteed by a dynamic resource broker that controls submission to grid or cloud resources, be they local or global, private or public.

Grids or clouds?

One important question is still open: how do I find out, and then tell the resource broker, whether my application should run on the grid or in the cloud? The answer, among others, depends on the algorithmic structure of the compute-intensive part of the program, which might be intolerant of high latency and low bandwidth. This has been observed with benchmark results. The performance limitations are exhibited mainly by parallel applications with tightly-coupled, data-intensive inter-process communication, running on hundreds or even thousands of processors or cores.

The good news is, however, that many HPC applications do not require high bandwidth and low latency. Examples are parameter studies often seen in science and engineering, with one and the same application executed for many parameters, resulting in many independent jobs, such as analyzing the data from a particle physics collider, identifying the solution parameter in optimization, ensemble runs to quantify climate model uncertainties, identifying potential drug targets via screening a database of ligand structures, studying economic model sensitivity to parameters, and analyzing different materials and their resistance in crash tests, to name just a few.

A Grid in the cloud 

One great example of a project that has built a grid in the cloud is Gaia, a European Space Agency funded mission which aims to monitor one billion stars. Amazon Machine Images (AMIs) were configured for the Oracle database grid and processing software (AGIS). The result is an Oracle grid running inside the Amazon Elastic Compute Cloud (EC2). To process five years of data for 2 million stars, 24 iterations of 100 minutes each translates into 40 hours of 20 EC2 CPU instances. Benefits include reduced costs (50 percent compared to the in-house solution) and massive scalability on demand without having to invest in new
infrastructure or train new personnel. And only a single line of source code was changed in order to get it to run in the cloud.

HPC needs grids and clouds

According to the DEISA Extreme Computing Initiative (DECI), there are still plenty of grand challenge science and engineering applications that can only run effectively on the largest and most expensive supercomputers. In DEISA, a European HPC grid, also called the HPC Ecosystem, is made up of 11-teraflops nodes.

Today, nobody would build an HPC cloud for these particular applications. It simply wouldn’t be a profitable business, the “market” (i.e., the HPC users) is far too small and thus lacks economy of scale. In some specific science application scenarios, with complex workflows of different tasks (nodes), a hybrid infrastructure might make sense: cloud capacity resources and HPC capability nodes, providing the best of both worlds.

About the Author

Wolfgang Gentzsch is Dissemination Advisor for the DEISA Distributed European Initiative for Supercomputing Applications. He is an adjunct professor of computer science at Duke University in Durham, and a visiting scientist at RENCI Renaissance Computing Institute at UNC Chapel Hill, both in North Carolina. From 2005 to 2007, he was the Chairman of the German D-Grid Initiative. Recently, he was Vice Chair of the e-Infrastructure Reflection Group e-IRG; Area Director of Major Grid Projects of the OGF Open Grid Forum Steering Group; and he is a member of the US President’s Council of Advisors for Science and Technology (PCAST-NIT).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This