Grids or Clouds for HPC?

By Wolfgang Gentzsch

November 2, 2009

Time and again, people ask questions like “Will HPC move to the cloud?” or “Now that cloud computing is accepted, are grids dead?” or even “Should I now build my grid in the cloud?” Despite all the promising developments in the grid and cloud computing space, and the avalanche of publications and talks on this subject, many people still seem to be confused and hesitant to take the next step. I think there a number of issues driving this uncertainty.

Grids didn’t keep all their promises

Grids did not evolve (as some of us originally thought) into the next fundamental IT infrastructure for everything and for everybody. Because of the diversity of computing environments we had to develop different middleware stacks (department, enterprise, global, compute, data, sensors, instruments, etc.), and had to face different usage models with different benefits. Enterprise grids were (and are) providing better resource utilization and business flexibility, while global grids are best suited for complex R&D application collaboration with resource sharing. For enterprise usage, setting up and operating grids was often complicated. For researchers this characteristic was seen to be a necessary evil. Implementing complex applications on HPC systems has never been easy. So what.

Grid: the way station to the cloud

After 40 years of dealing with HPC, grid computing was indeed the next big thing for the grand challenge, big-science researcher, while for the enterprise CIO, the grid was a way station on its way to the cloud model. For the enterprise today, clouds are providing all the missing pieces: easy to use, economies of scale, business elasticity up and down, and pay-as you go (thus getting rid of some CapEx). And in cases where security matters, there is always the private cloud. In more complex enterprise environments, with applications running under different policies, private clouds can easily connect to public clouds — and vice versa — into a hybrid cloud infrastructure, to balance security with efficiency.

Different policies, what does that mean?

No application job is alike. Jobs differ by priority, strategic importance, deadline, budget, IP and licenses. In addition, the nature of the code often necessitates a specific computer architecture, operating system, memory, and other resources. These important differentiating factors strongly influence where and when a job is running. For any new type of job, a set of specific requirements decide on the set of specific policies that have to be defined and programmed, such that any of these jobs will run just according to these policies. Ideally, this is guaranteed by a dynamic resource broker that controls submission to grid or cloud resources, be they local or global, private or public.

Grids or clouds?

One important question is still open: how do I find out, and then tell the resource broker, whether my application should run on the grid or in the cloud? The answer, among others, depends on the algorithmic structure of the compute-intensive part of the program, which might be intolerant of high latency and low bandwidth. This has been observed with benchmark results. The performance limitations are exhibited mainly by parallel applications with tightly-coupled, data-intensive inter-process communication, running on hundreds or even thousands of processors or cores.

The good news is, however, that many HPC applications do not require high bandwidth and low latency. Examples are parameter studies often seen in science and engineering, with one and the same application executed for many parameters, resulting in many independent jobs, such as analyzing the data from a particle physics collider, identifying the solution parameter in optimization, ensemble runs to quantify climate model uncertainties, identifying potential drug targets via screening a database of ligand structures, studying economic model sensitivity to parameters, and analyzing different materials and their resistance in crash tests, to name just a few.

A Grid in the cloud 

One great example of a project that has built a grid in the cloud is Gaia, a European Space Agency funded mission which aims to monitor one billion stars. Amazon Machine Images (AMIs) were configured for the Oracle database grid and processing software (AGIS). The result is an Oracle grid running inside the Amazon Elastic Compute Cloud (EC2). To process five years of data for 2 million stars, 24 iterations of 100 minutes each translates into 40 hours of 20 EC2 CPU instances. Benefits include reduced costs (50 percent compared to the in-house solution) and massive scalability on demand without having to invest in new
infrastructure or train new personnel. And only a single line of source code was changed in order to get it to run in the cloud.

HPC needs grids and clouds

According to the DEISA Extreme Computing Initiative (DECI), there are still plenty of grand challenge science and engineering applications that can only run effectively on the largest and most expensive supercomputers. In DEISA, a European HPC grid, also called the HPC Ecosystem, is made up of 11-teraflops nodes.

Today, nobody would build an HPC cloud for these particular applications. It simply wouldn’t be a profitable business, the “market” (i.e., the HPC users) is far too small and thus lacks economy of scale. In some specific science application scenarios, with complex workflows of different tasks (nodes), a hybrid infrastructure might make sense: cloud capacity resources and HPC capability nodes, providing the best of both worlds.

About the Author

Wolfgang Gentzsch is Dissemination Advisor for the DEISA Distributed European Initiative for Supercomputing Applications. He is an adjunct professor of computer science at Duke University in Durham, and a visiting scientist at RENCI Renaissance Computing Institute at UNC Chapel Hill, both in North Carolina. From 2005 to 2007, he was the Chairman of the German D-Grid Initiative. Recently, he was Vice Chair of the e-Infrastructure Reflection Group e-IRG; Area Director of Major Grid Projects of the OGF Open Grid Forum Steering Group; and he is a member of the US President’s Council of Advisors for Science and Technology (PCAST-NIT).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This