3Leaf Launches Virtual SMP Platform

By Michael Feldman

November 3, 2009

Startup 3Leaf Systems has launched its first product offering, the Dynamic Data Center Server (DDC-Server). It is a combination of silicon and software that pools server CPU and memory into dynamically-sized virtual servers. Essentially it aggregates hardware resources so that a cluster farm can be turned into one or more SMP systems. The 3Leaf solution consists of a proprietary ASIC and a set of software that can be inserted into standard x86 server technology.

It is designed to solve multiple problems in the datacenter, including under-utilization of infrastructure and limitations of existing virtualization schemes. Target markets include traditional enterprise customers as well as eCommerce, social media, and high performance computing users — essentially anyone with a need for scaled up x86 machines. And since the technology enables the cluster nodes to be dynamically split and recombined according to application requirements, it can appeal to organizations that now maintain multiple systems to run different types of workloads.

The company is marketing the technology as an enabler of the “dynamic cloud,” but overall, the 3Leaf offering delivers a solution similar to that of ScaleMP’s vSMP technology, in that it enables a number of commodity x86 servers to be aggregated into a large shared memory SMP system that runs a single OS image. The idea is to be able to replace much more expensive proprietary SMP machines by using commodity building blocks. However unlike ScaleMP, which uses a software/firmware-only solution, 3Leaf uses a combination of hardware and software to achieve SMP virtualization.

In the case of 3Leaf, their ASIC is placed on the motherboard and enables distributed memory coherence across the cluster’s fabric of choice, either Ethernet or InfiniBand. Essentially, the chip acts as a memory coherence controller. The fact that low-latency interconnect switches and adapters are now just commodity server components, rather than custom parts, opens the door to the type of solution 3Leaf is offering.

The downside is that the 3Leaf ASIC must be present on each server in the cluster, so it’s not the plug-and-play experience that you would get with a software-only solution. The first 3Leaf product set supports AMD’s HyperTransport architecture, where the 3Leaf ASIC is plugged into the Socket F interface. The server being shipped today is built on a two-socket Opteron motherboard supplied by Supermicro. With this solution, up to 16 nodes (192 cores) and 1 TB of memory can be aggregated into a single virtual SMP system. Next year, 3Leaf will offer an Intel version, based on the company’s Quick Path Interconnect (QPI) 1.1 and the “Sandy Bridge” processors. That product set will be able to scale up to 32 nodes, many hundreds of cores, and 64 TB of memory.

According to Bob Quinn, 3Leaf founder, chairman and CTO, the rationale for using hardware rather than just software to create a virtual SMP has to do with performance. The ASIC allows a memory page to be read and written simultaneously by an application on two different nodes, since the coherency is hardware enforced at the level of a 64-byte cache line. In a software solution, the OS must get involved, stopping and then restarting one thread to allow another thread to access the same memory page.

“In the case of 3Leaf, we behave like a big old expensive IBM, or SGI, or Sun system,” says Quinn. “It really is a traditional cache-coherent shared memory system, with the difference being it’s not all custom-designed hardware. It’s using existing switches to provide the equivalent of a custom-designed backplane.”

But it’s not all about just building big SMP machines. The 3Leaf software, which is delivered in firmware, is used to control the way the cluster resources are divvied up. There are three flavors: DDC-Pool, DDC-Range, DDC-Flex. DDC-Pool is for building static SMP systems at the granularity of the cluster node. In this case, resizing the SMP requires a reconfiguration and reboot. DDC-Range is also a static solution, but offers the granularity of allocating compute resources down to the level of an individual core. With this software, a virtual SMP machine can be constructed from various sized slices of one or more physical servers. DDC-Flex provides the granularity of the DDC-Range, but allows the user to reconfigure the cluster while running, rather than requiring a reboot. DDC-Flex is not yet available, but is planned to be released sometime in 2010.

The ability to slice and dice a moderate sized cluster into one or more virtual servers means that users can use a single set of hardware as a platform for heterogenous workloads. For example, in the oil and gas business, seismic data analysis works fine with vanillas clusters in a distributed memory environment, but advanced reservoir simulations are often better run in large shared memory environments. With 3Leaf technology, both applications can be served by the same cluster hardware. That model, says Quinn, can be applied across many application domains.

For the past year, the product has been in the hands of beta customers, including a number of HPC users. Jim Lupo, a researcher at LSU, has been testing the 3Leaf platform with hurricane storm surge prediction and molecular dynamics codes. According to him, performance was comparable to other HPC systems, but since the technology supports both shared memory and distributed memory environments, the 3Leaf system was more flexible and required less admin and programming support.

Although 3Leaf is building the initial AMD-based systems today, the company’s market strategy involves partnerships with OEMs and system integrators. The idea is to get vendors like HP, IBM and Dell to take this technology to market as an addition to their x86 server lineups. Quinn says they are currently engaged with all the tier 1 OEMs and a number of tier 2 and 3 OEMs as well.

The challenge here is many system vendors already offer their own proprietary top-of-the-line SMP machines, like the HP Superdome 9000, IBM Power 595, and the SGI Altix 4700. While these are not x86-based machines, they’re still aimed at the kind of high-end applications 3Leaf has in its sights. The company is betting that all the major OEMs are looking to offer big x86 shared memory machines, and is hoping that partnering with them will be the most attractive path to get there.

In the HPC space, SGI’s upcoming “Ultraviolet” product line, which will move the company’s NUMAflex shared memory architecture onto an Intel x86 platform, would perhaps be the most directly threatened by 3Leaf-based platforms. It may come down to a price-performance calculation, but since neither of these products is in the field yet, it’s impossible to say how they might match up.

In general, 3Leaf wants to put a lot of daylight between the cost of one of its setups and an equivalent proprietary shared memory system. Pricing on the 3Leaf DDC-Server products shipping today vary from $99,000 for a low-end model (256 GB of shared memory, 96 cores of 2.4 GHz Istanbul processors, and 4 TB of storage) up to $250,000 for a maximum configuration (1 TB shared memory, 192 cores of 2.8 GHz Istanbul processors, and 8 TB of storage). The price includes the InfiniBand switch, cables, Linux operating system, and 3Leaf’s DDC-Pool software.

Anyone curious to see 3Leaf systems in action this month can attend the upcoming Supercomputing Conference (SC09) in Portland, Ore., where the company will be demonstrating its technology.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This