How Three Global Organizations Are Harnessing the Power of GPU Computing

By Nicole Hemsoth

November 3, 2009

The groundswell of enthusiasm for GPU computing was underscored recently by the Institute of Processing Engineering (IPE), Chinese Academy of Sciences (CAS).

Since IPE’s founding in 1958, the institute has made extensive use of high performance computing (HPC) for its investigations into chemical engineering, metallurgy, biochemistry, material science, energy and green technology. IPE notes that, “The semiconductor technology for integrated circuits, which has powered the dramatic development of HPC, is now approaching its physical limit, for the foreseeable future at least. Fine-grained multi-thread and many-core parallel computation is, most probably, the only get-around to maintain this development, and NVIDIA’s massively parallel CUDA™ architecture has established a new paradigm at this critical moment.

IPE is not alone. Companies, laboratories and research institutions around the world are turning to GPU computing to augment or even replace their CPU clusters. The power of the GPU model has become available to developers through CUDA, a software and hardware architecture that enables GPUs to be programmed using high level languages such as C. And now NVIDIA has introduced the next generation of CUDA GPU architecture, codenamed “Fermi”, that delivers breakthroughs in both graphics and GPU computing, plus support for C++ in addition to C, Fortran, Java, Python, OpenCL and Direct Compute.

GPU computing is an international phenomenon. Below are brief descriptions of how three organizations, the Institute of Processing Engineering at the prestigious Chinese Academy of Sciences, Bloomberg in the United States and the U.K.’s BAE Systems, are using NVIDIA GPU-based solutions to meet their HPC requirements.

IPE

IPE at CAS, located in Beijing, has been developing the energy-minimization multi-scale (EMMS) method for more than 25 years. Though the method was originally aimed at multi-phase flow, it gave birth to a highly scalable and general-purpose simulation methodology for different systems that took into account the structural similarities between the HPC hardware, software and the problem to be solved. An algorithm framework applicable to a wide range of physical systems and computer architectures was thereby proposed during 2000~2003, but put on hold due to the fact that the institute’s CPU-based systems could not handle the computational complexity involved.

In 2007, with the release of CUDA 1.0 from NVIDIA, the situation changed dramatically. Within a year IPE had deployed its first GPU computing system that embodied their EMMS principle. Based on 126 HP workstations with 200 NVIDIA Tesla C870 GPU computing processors, the system, Mole-9.7, delivered over 100 teraflops (TF) of peak performance in single precision, enough horsepower to tackle some of their most pressing simulation problems.

That was just the beginning. The IPE system later received another shot in the arm with the addition of over 600TF worth of NVIDIA GT200 GPUs, and was interconnected with other IPE computational resources over a 20 Gbp/s InfiniBand fabric. The whole GPU-based system, known as Mole -8.7, broke the petaflops (PF) barrier in March 2009 and was by far the largest GPU cluster in China and one of the largest in the world.

With its ability to realize the structural similarity between hardware, software and the computed system, IPE is in an advantageous position to solve industrial problems efficiently using such an HPC system.

Here are just a few of the CUDA applications at IPE:

  • Direct numerical simulation of multiphase flow – One of the most compute-intensive and intractable problems in classic physics, direct numerical simulation using Navier-Stokes equations should allow scientists to predict the flow field in engineering when other numerical approaches fail. Based on CUDA and MPI, the main application is aimed at fluid beds, stirred tanks, bubble columns, etc. So far a 20x boost in speed has been realized in practical applications, compared to one core of a mainstream CPU.
  • Quasi-realtime simulation of industrial reactors – Mole-8.7 is now capable of simulating meter-scale reactors on sub-millimeter scales in near real-time. A simulation using 480 GPUs and 60 million solid particles was recently completed. The goal is to improve the simulation methodology and speed so reactor designers can specify the configuration and operational conditions of the equipment and examine its performance in close to real time.
  • Simulations of oil recovery and carbon storage – The IPE HPC cluster is also being used to simulate the flow of oil and water in porous rocks, a capability important for oil exploration and recovery. The scientists are using multi-scale methods in order to simulate flow behavior on a geological scale (hundreds of kilometers) on one hand, and micro-scale effects (less than a millimeter) on the other. These simulations require an elaborate coupling between GPU and CPU computation, which is facilitated by CUDA.

In recognition of its extensive development and advancement of science through the use of CUDA and GPU computing, NVIDIA recently awarded CAS-IPE the distinction of a CUDA Center of Excellence. NVIDIA and CAS-IPE will continue to work together to further the value of GPU computing with next generation technologies.

Bloomberg  

Despite the balky economy, transactions involving thousands of mortgages are still a routine occurrence in the financial markets. For example, collateralized debt obligations (CDOs) and collateralized mortgage obligations (CMO) make up baskets of thousands of loans that are publicly traded financial instruments.

Bloomberg, headquartered in New York with offices around the world, is a leading financial services organization. One of its services is modeling the risks and determining the price of CMO/CDO baskets for its customers. The company uses powerful algorithms to calculate massive amounts of data and deliver pricing information based on large scale simulation. Using CPUs, these calculations would have taken 16 hours, an unacceptable solution for an overnight computational run.

Bloomberg’s solution was to implement an NVIDIA Tesla GPU computing system in its data center and port the CMO/CDO application to run on the CUDA architecture. The results were immediate and dramatic. Large calculations that dragged on for hours using the CPU-based cluster were now completed in minutes; smaller runs that once took 20 minutes take only seconds.

The speed-ups delivered by NVIDIA CUDA and GPU computing allowed Bloomberg to process the CMO/CDO prices up to 50 times faster than on a CPU. The company is now investigating the possibility of offering real-time pricing – a huge step forward for the industry. 

Bottom line, Bloomberg’s pricing calculations for securities backed by assets such as mortgages, home equity loans and auto loans, as well as mortgage-backed securities such as CMOs, have seen an 800% speed up in processing compared to its CPU solution. At the same time, the data center is now consuming three times less power and the NVIDIA hardware is taking up one quarter of the tile space. 

Bloomberg is also researching other uses for its GPU computing cluster such as valuations of certain types of derivative products, risk management and portfolio valuations. 

In the last analysis, Bloomberg’s customers are the biggest winners in this shift to GPU computing. They are now working with the most current pricing information using the most predictive models, a capability that provides them with a serious competitive advantage in a market where timing is everything. 

BAE Systems

As the premier global defense, security and aerospace company, BAE Systems designs, builds and supports a wide range of products, from unmanned aircraft to land vehicles, ships and submarines. Understanding the aerodynamic performance of its products, using the principles of computational fluid dynamics (CFD), is a vital part of the design process. However, as the requirements of their customers have become more complex and development timescales more challenging, the simulation tools currently available to BAE Systems’ engineers have begun to limit their ability to affordably explore design options with greater accuracy.

Physical model tests are extremely expensive, with a single wind tunnel test campaign costing more than $700,000, while virtual testing is limited by the power and cost of conventional computing systems. In its efforts to develop more affordable and comprehensive CFD simulations, BAE Systems has turned to NVIDIA Tesla GPUs.

One of the goals of the Mathematical Modeling team at the BAE Systems Advanced Technology Center is to make engineering design tools like CFD more affordable and capable so its simulations need no longer be limited to a small number of design conditions, such as cruise, but can be applied to the whole performance envelope that the products will experience in service. Assessing all the design points of an aircraft can require between ten thousand and twenty million individual simulations, which is an unfeasibly costly and time consuming process using conventional CFD techniques.

Jamil Appa’s team recognized that the highly parallel and computationally intensive nature of its CFD and visualization problems made them ideally suited to processing on the GPU. Using Tesla GPUs, BAE Systems has succeeded in creating a system which packs the power of 60 Nehalem cores into a workstation-sized unit capable of processing both visualization and CFD to generate high fidelity 3D simulations.

“Up until now, everyone thought real time visualization and CFD was too ambitious,” says Jamil Appa. “By running our visualization techniques and CFD codes on the GPU we’ve proved them wrong – we’re now very close to having a system which is not just faster but actually interactive. In tests with production test cases we used an NVIDIA Tesla S1070 solution and achieved 100x times to solution speed-ups, meaning tests which previously took hours now require a matter of minutes.

“GPU computing is extremely exciting because it can deliver both a cost saving, in terms of power, total cost of ownership and software licenses, and a significant increase in performance. We’re working with NVIDIA to continue developing the potential of our GPU systems – this technology is hugely significant for our industry and for high performance computing as a whole.”

GPU – A Technology That’s Time Has Come

The IPE at the Chinese Academy of Sciences, Bloomberg and BAE Systems are just three examples of the many organizations around the world that are benefitting from GPU computing. Now, with the recent introduction of the “Fermi” architecture in September, 2009, NVIDIA has taken a major step in ensuring that the GPU is a technology that’s time has come.

To find out how other organizations around the world are using NVIDIA’s GPU computing solutions to solve their HPC problems, visit http://www.nvidia.com/page/pg_20040317553375.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This