Timesharing 2.0

By Steve Campbell

November 3, 2009

Cloud computing: Is there anything new to say? A fair question as it seems that hardly a week, or even a day, goes by without a new announcement about some new product or service for the “cloud.” When you read about cloud computing in The Economist, BusinessWeek or Forbes, you know something is really happening. Further evidence of this is the series of IBM prime time TV ads extolling the virtues of cloud computing. The technology has become mainstream.

One of the reasons business publications are writing about the cloud is because the technology is breaking out from its roots in high performance computing (HPC) and is being adopted for commercial applications. But is cloud computing today’s hot technology that promises to lower TCO, reduce energy costs, and enable dynamic or agile datacenters or is it just the latest hype? That is, will cloud computing really happen and will it deliver on its promises? And what does it mean for high performance computing?

Picture this: You’re sitting at a keyboard and you login to the system. Your ID is verified, which is good, and you begin to enter the data for your application need. When finished entering the data, the application begins executing your workload, along with many other users’ workloads. Eventually your workload completes and you receive the results together with a statement for CPU time, memory usage, disc I/O usage connect time, etc. A very comprehensive statement for all the services used. This method of access enables several other users to access the same system thus dramatically lowering the cost of computing, enabling organizations to use compute resources without owning them, and creating a development environment resulting in new applications being created.

Sound familiar? What I described was my experience using a computer system at a College in London, circa 1971. The era of timesharing had just begun. The computer system was in the datacenter (glass house) and utilized new technologies such virtualization, based on LPARs and domain, and workflow management.

In my mind, cloud computing today is Timesharing 2.0. What’s new? There are three basic differences 1) access, 2) standards, and 3) management/middleware software.

  1. Access today is from any Web-based device connected to the Internet; anytime, anywhere, any device has finally arrived.
  2. The use of standards-based software, connectivity, etc., enables heterogeneous systems to co-exist within the same cloud.
  3. Rich suites of management and middleware software and virtualization tools relieve the IT resource administration of the burden of managing this heterogeneous infrastructure and mapping workloads to infrastructure.

It’s that simple. Timesharing 2.0, better known as cloud computing, has arrived. Enough of the soapbox.

Cloud computing basics

Cloud computing is becoming ubiquitous and yet it is still evolving. Consequently, there is no accepted industry definition. Gartner defines cloud computing as “a style of computing in which scalable and elastic IT-enabled capabilities are delivered as a service to external customers using Internet technologies.”

Or try the Wikipedia definition:

Cloud computing is the provision of dynamically scalable and often virtualized resources as a service over the Internet on a utility basis. Users need not have knowledge of, expertise in, or control over the technology infrastructure in the “cloud” that supports them. Cloud computing services often provide common business applications online that are accessed from a web browser, while the software and data are stored on the servers.

The general consensus is that cloud computing has the following attributes:

  • Users can access their applications and data from any device connected to the Internet.
  • The concept generally incorporates a combination of the following:
    • Infrastructure as a Service (IaaS)
    • Platform as a Service (PaaS)
    • Software as a Service (SaaS)
  • It is frequently associated with virtualization and Web 2.0 technologies.
  • It exhibits elastic scaling – dynamic and fine grained.
  • Users can access large scale computing resources without making the heavy investment in IT infrastructure.
  • Users can access IT resources as utility service, pay-for-usage model — computing on demand.

The huge benefit of cloud computing is that companies can access the latest IT infrastructure for their workloads without having to make the huge investment in infrastructure; they can simply pay-for-usage. This is good for everyone, but for small and economically strapped firms, it is especially attractive.

One of the key software technologies is virtualization. This is significantly different from Timesharing 1.0 where virtualization was proprietary and built into the hardware. Today virtualization is a fundamental technology that enables cloud computing resource provisioning, for example, in a heterogeneous environment. Based on industry standards and utilizing the x86 VT instruction to enhanced the performance and supports multiple operating systems. Hypervisor technology is enhanced by rich set of tools for from resource provisioning to live migration.

Delivery models

Cloud computing architects are faced with many decisions and choices when developing cloud deployment models. There are several different models that are accepted in the industry today:

  • Private Cloud: Operated solely by and for the organization.
  • Public Cloud: Available to the general public on a pay-for-usage model.
  • Hybrid Cloud: A composition of private and public clouds.

There are infrastructure delivery models for seasonal fluctuations, for example, at tax time. In such models, companies with private clouds open up part of their infrastructure, creating public clouds to manage seasonal traffic.

Trends

IT vendors will continue to evolve their product lines and develop more “marketingware” as they strive for defining their uniqueness, value add and messaging. Many of them need a lot of help in differentiating themselves.

But there are a number of offerings from existing vendors that are worth watching:

The datacenter-in-a-box or container. This is a self contained IT datacenter that is delivered in a container such as Sun’s Modular Datacenter or Verari’s FOREST Container. These container-based datacenters can provide almost instant datacenter capacity for today’s cloud computing infrastructure. Designed to be eco-friendly, cost effective, and flexible.

The traditional approach. Solutions like IBM’s Cloudburst, based on IBM’s BladeCenter, or HP’s BladeSystem Matrix are conventional blade designs that can serve as cloud infrastructure. These datacenter-in-a-rack solutions can help organizations drive down the complexity and growing operating costs in particular reduce their OPEX utilities cost by delivering true green computing solutions.

Management and middleware software. Simplifying the deployment and operation of hardware (servers, storage, and networking) is the critical glue that makes the cloud model possible. The model is dependent upon this software to hide the complexity of the underlying infrastructure for the end user. For the IT organizations that are building and delivering cloud services the benefits of rich software tools will ease their task while reducing time to deploy services and simplify management.

Security. The protection of data and algorithms is perhaps the biggest concern end users have regarding cloud computing. Cybercrime is on the rise despite efforts to thwart the hackers. As consumer technology, social networking and Web 2.0 continue their rapid adoption in the workplace building secure cloud IT infrastructure is becoming more and more difficult. The best advice here is to design in security before you start building and deploying services. Don’t wait for a breach in security before taking action. Do your research.

Service. We’re starting to see third party compute cycle brokers emerge. Nimbis Services, for example, connects its clients through an industry wide brokerage and clearinghouse with 3rd party compute resources, commercial application software and expertise. The goal is to reduce risk and provide pay-as-you-go. Match users with resources.

Hybrid architectures. Over the past three or four decades HPC computing has seen many architecture to solve complex scientific workloads, we’ve seen the big SMP nodes, vector supercomputers such as Cray and mini-supercomputers such as Convex change the price performance dynamics of HPC. We have also seen numerous MPP systems. The rise of powerful commodity chipsets changed the market forever and gave birth to the distributed cluster and Grid architectures, connected via high speed network fabrics. The one architecture that survived is, Symmetric Multi-Processor (SMP), where multiple CPUs access a large shared memory, typically ccNUMA, with a single OS instance. Today that architecture is at the chip level with the x86 chipsets form Intel and AMD being multicore and 64-bit, they are SMP on a chip.

For example, Convey Computer’s server architecture combines the familiar world of x86 computing with hardware-based, application-specific instructions to accelerate certain HPC applications. Another approach to hybrid computing is that provided by vendors such as 3Leaf Systems and ScaleMP. These solutions enables a group of x86 servers to look like one big SMP system with a single pool of CPU processing and memory that can be dynamically allocated and/or repurposed to applications as needed. Essentially it turns a distributed architecture into a ccNUMA SMP.

Storage and networking. Most analysts confirm that storage is doubling every eighteen months. HPC workloads, in particular, have huge storage needs that can stress the system. There are developments such as the recent Panasas and Penguin partnership to provide high-performance parallel storage and on demand services designed specifically for high performance computing. Amazon S3 (Simple Storage Service) is an online storage web service offered by Amazon Web Services providing unlimited storage through a simple web services interface.

In the network arena, InfiniBand continues to increase its market penetration due to lower price points and a more mature software ecosystem. More interesting, however, is that several vendors are now building InfiniBand capabilities into their HPC-focused cloud solutions.

The increase demand for network performance is driven by HPC application demands and the new generations of x86 chips are able to fully utilize 10 Gigabit Ethernet (10GigE). Performance demand coupled with increased volumes of data creates the perfect storm for 10GigE adoption. One final comment on networking is the expected growth in converged network adapters (CNA) and Fiber Channel over Ethernet (FCoE). Both these offer the benefits of reduced costs and higher throughput.

How big is the opportunity?

For the vendors of products and services, the growth opportunity is large and growing rapidly. In some cases, it is hard to get any attention to your offerings if you do not have the name cloud associated with the product or service.

At the International Supercomputing Conference (ISC’09) in June 2009, Platform Computing surveyed IT executives who attended the conference. Over a quarter (28 percent) of IT executives surveyed are planning to deploy private clouds in 2009. Increased workload demand of applications and the need for IT to cut cost are cited as two major factors behind the planned adoption of HPC clouds.

The traditional analyst firms that specialize in market sizing and growth are predicting a bright future for IT infrastructure and services in the cloud. One of the most recent forecasts is in an October 2009 IDC Exchange blog titled IDC’s New IT Cloud Services Forecast: 2009-2013. In this post, IDC is forecasting that “the five year growth outlook remains strong, with a five-year annual growth rate of 26 percent — over six times the rate of traditional IT offerings.” Full details will be published in the upcoming IDC’s Cloud Services: Global Overview.

The HPC connection

For the high performance computing space, there are a growing number of companies and organizations providing services that target the special needs of this group of users. Our companion article encapsulates the vendors that are addressing this market today.

The HPC research community is also on board. In February of this year, UC Berkeley researchers released a report (PDF) discussing the impact and future directions of cloud computing. It served as a one of the first academic treatises on the subject. Eight months later, the US Department of Energy launched a five-year, $32 million program to study how scientific codes can make use of cloud technology. That work will take place at the DOE’s Argonne and Berkeley national laboratories.

Conclusion

Cloud computing is not new; it is largely an evolution of IT infrastructure. The pay-as-you-go model of cloud computing has its roots in the timesharing era of 1970s. As such, we are seeing cloud computing grow from a promising business concept to one of the fastest growing segments of the IT industry.

Organizations with challenging workload profiles or recession-hit companies are realizing they can access best-in-breed applications and infrastructure easily quickly and on a pay-for-usage basis. This now includes HPC users, who are looking to the cloud to maximize their FLOPS per dollar.

About the Author

Steve Campbell, an HPC Industry Consultant and HPC/Cloud Evangelist, has held senior VP positions in product management and product marketing for HPC and Enterprise vendors. Campbell has served in the vice president of marketing capacity for Hitachi, Sun Microsystems, FPS Computing and has also had lead marketing roles in Convex Computer Corporation and Scientific Computer Systems. Campbell has also served on the boards of and as interim CEO/CMO of several early-stage technology companies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This