Déjà Vu All Over Again

By Nicole Hemsoth

November 16, 2009

Steve Wallach, a supercomputing legend and recipient of the 2008 IEEE Seymour Cray Award, has participated in all 22 supercomputing shows. He is known for his contributions to high performance computing through the design of innovative vector and parallel computing systems. He is co-founder and chief science officer for Convey Computer Corp., a new company with a hybrid-core computer that marries the low cost and simple programming model of a commodity system with the performance of customized hardware architecture.

Never short on opinions, especially when it comes to high performance computing, Steve Wallach talked to HPCwire about the future of HPC and how lessons from the past can point the way for the future.

HPCwire: There’s been a lot of talk about how recent architecture advancements will bring GPU computing into the mainstream for high performance computing with significant speedups and energy savings. You disagree. Why?

Steve Wallach: GPUs are an interesting technology and some applications will probably see significant speed-up, but I don’t see them in the mainstream. Here’s why: programmers will have to put in a lot of effort to get the speed-up. Real-world applications consist of millions of lines of code, and organizations have invested too much money in those programs. If you tell them they have to modify those programs to use your technology, you lose. And it’s not just the software that has to be changed; it is the entire programming eco-structure: debuggers, profilers, and programming memory. Anything that disturbs those underlying realities is destined to become a niche player. This is the biggest difference between an accelerator and a coprocessor. A coprocessor is an extension to the instruction set and is part of the same environment. GPUs are not. A GPU consists of two different programming environments and you have to move the data back and forth between them to get the benefits. The host cannot see the memory of the GPU; there are two separate address spaces.

It’s similar to what we saw with attached array processors in the 80s. What we saw back then that you had to explicitly move and manage the data — which reduced programmer productivity, raised actual cost of ownership and ultimately reduced performance. Like back then, the GPU programming model is different from its host.

GPUs initially did not have ECC correctable memory, now they do. This, however, demonstrates their lack of general purpose computing requirements. You have to work hard to make it work and not every application is amenable. The memory structure of a GPU is meant to be optimal for sequential access, but many programs require non-unity stride which will reduce performance for those applications. Classical supercomputers from Cray, Convex, NEC, and Fujitsu had very high bandwidth, highly interleaved main memory. A GPU is not going to be a general-purpose or a wide-spread solution for technical and software reasons. You can only execute the “hot spot” on the GPU, for example, and still need a classical host like the x86. It is not an integrated system. And, as of now, GPUs do not support virtual memory.

The GPU is really just a contemporary version of an attached array processor. If you look at the last 30 years, the architectures that have succeeded in the long term have been the ones that are easiest to program and that fit into the current environment. New languages take time to be learned and adopted. Organizations can’t hire the right people to program the machines. Each new full-time equivalent programmer who has to be hired can easily add $200,000 to $300,000 to the costs of the new system per year. This is not a new phenomenon; it has been true for the past few decades. The time to reconfigure is really expensive.

HPCwire: You’ve said that “software is the ‘Trojan Horse’ of high-performance computing.” What do you mean by that?

Wallach: As an organization, you accept the hardware — the horse — and then the next day the software warriors pour out and devour your IT department. As technology enthusiasts, we get excited by new technologies based on peak performance micro-architecture and the software questions come later as well as questions about “how do I fit it into my environment?” and “will I be able to achieve this level of performance with my applications?”

This has been true for the last 30 and will be true for the next 30 years. If you go back to the 80s — you had all kinds of interesting technologies like array processors and others, but the ones that had the best software succeeded such as Convex, Cray and Alliant. They succeeded because the programmer could leverage the technology for their FORTRAN and C environments. Integrated solutions like these succeeded and companies like CDC failed because their software was part of an anemic development environment. As another example from the past, the Japanese (Fujitsu and NEC) had exceptional software environments.
 
Fast forward to today. It’s like déjà vu all over again. A lot of new technologies are evolving but are not dealing with the software environment. Previous FPGA vendors had this problem. They were not integrated with the host environment. Vector processors, such as ClearSpeed, have this problem and this is true of all accelerators and GPUs.

The GPUs have some great technologies for visualization, for example, but are not integrated. You have to learn how to program in new languages like CUDA and there aren’t a lot of major applications written in CUDA. Programmers have to re-code or set up source translators that facilitate FORTRAN to CUDA. There are no translators for FORTRAN to assembly code and from a technical perspective it is much more efficient to go from FORTRAN to assembly code. Source to source translators are NOT as efficient as compilation to assembly code.

HPCwire: You talk about Convey’s hybrid-core computer as being an application specific, low power node. What is the significance of this description to the market?

Wallach: In the past decade, every generation has added new, specific instructions to general purpose computers to speed performance. For example, the current x86 system enhances image processing and new instructions have been developed to enhance vector processing. Since clock cycles are basically flat, you will see the trend toward specific instructions built into the microprocessors increasing. If one instruction can replace 10 instructions, you will have reduced power for that application. Our view is that it is now time to step up and increase the functionality of this approach. We advocate having one instruction to replace 100 instructions. Now you don’t have to rely on clock cycles to increase performance. You are relying instead on data and control paths. This approach is extremely useful for Convey and allows us to significantly increase performance while reducing power requirements, footprint and overall facility costs for a data center.

HPCwire: In order to be successful, do you think new computing paradigms need to leverage existing eco-structures like Linux and Windows?

Wallach: Absolutely. As I said before, new languages mean higher costs and lower productivity. In VC deals, whenever I hear that you have to program in a new language to make it work, I turn it down.

With new computing paradigms, you get several benefits when they leverage existing eco-structures like Linux and Windows. First off, they are more easily acceptable in the marketplace. If I’m the data center manager, I don’t have to hire anyone new or have training for a new eco-structure. No need to program in OCCAM, for example. I call programs that don’t take into consideration legacy systems and that are obscenely difficult to integrate, “pornographic” programs — you can’t always describe them exactly, but you know them when you see them. In 1984, I converted a FORTRAN program from CDC to ANSI FORTRAN to see what they were doing and it was awful. In the contemporary world, CUDA is the new pornographic programming language.

In addition, Windows and Linux allow for adoption of related technologies from other industries without changing the programming environment. Industry innovators such as the researchers at Lawrence Berkeley National Laboratory believe, for example, that future supercomputers will use the processors found in cell phones and other hand-held devices. Why? Because they use so little energy and have proven that they can handle sophisticated tasks (October 2009, IEEE Spectrum: “Low-Power Supercomputers” ). It is easy for the manufacturers to build chips designed for specific HPC applications just like they build different chips for each Smartphone brand. Chip manufacturers will also provide the software — compilers, debuggers, profiling tools, even complete Linux operating systems — tailored to each specific chip they sell which will make the new systems easy to integrate into a current environment.

HPCwire: Last year in HPCwire you said the future of HPC involves improved software, in particular more widespread use of PGAS languages and optical interconnects. Is this still the case?

Wallach: Yes. I believe the need for optical interconnects increases as we build large systems. The efficiency of scaling in parallel processing has to do with bandwidth and latency. Optical interconnects are much more efficient in terms of speed and power as compared to copper. PGAS (partitioned global address space) languages allow programmers a global view of their dataset and are much more efficient. PGAS languages also make it much easier to program highly parallel systems — they are much better than MPI.

HPCwire: Speaking of software, where is Convey on its development of different software personalities?

Wallach: We are on track with our development of personalities. Convey’s personalities are application architectures and instruction sets that support a wide array of application-specific solutions. Rather than develop hundreds of unique applications, we a creating a manageable number of personalities that can be leveraged in hundreds of different ways. We’ve shipped a range of different personalities for different customers, and we’ve got several others in development.

In the end, we anticipate developing around a dozen different core personalities. This is consistent with what leading researchers have determined, also. For example, in the study published by the University of California at Berkeley, “The Landscape of Parallel Computing Research: A View from Berkeley,” researchers define what they call MOTIFs or computer application structures for HPC. They describe 13 computer application structures on the Y access with the X access representing a particular application and how it uses that structure. Berkeley’s view is consistent with ours that there are approximately a dozen different personalities that cover the full spectrum of computing. In our development, we add a third element to the equation — the memory system — and see this as a three-dimensional grid. For this case, a unity stride (access sequential elements — dense data); or a highly interleaved (access non-sequential elements — multiple independently accessible memory banks — sparse data); or a “smart” memory (PIM – perform specific operations in the memory system — thread based) system is required for optimal performance.

We are on track to have personalities with memory structure and instruction sets with these MOTIFs, which is where we believe computing is going. For the HC-1, we ultimately anticipate 13 MOTIFs — but some will use the same personality.

HPCwire: Convey has just started shipping production units, can you tell us about the company’s early customers and how they’re using the HC-1?

Wallach: Early applications for the HC-1 follow the classic profile of HPC applications: signal-image processing, computer simulations, bioinformatics, and other applications we can’t discuss at this time. We have HC-1s going into the world’s leading research labs, all of which we will talk about during SC09 at our booth.

You can catch up with Steve Wallach during SC09, where he is participating in a talk on “HPC Architectures: Future Technologies and Systems” from 1:30-2:00 p.m. on Thursday (Rm. E143-144); or at Convey’s booth (#2589).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This