DataDirect Networks Builds on Storage Fusion Architecture

By Michael Feldman

November 16, 2009

HPC storage vendor DataDirect Networks (DDN) will soon offer integrated clustered file system support in its Storage Fusion Architecture (SFA) product line. The idea is to drastically reduce the amount of storage switches and file system servers, and thus the cost and complexity of supercomputer-sized file storage. The initial product to provide this capability is the SFA10000E, which is being marketed as an “Open Storage Appliance”  by DDN.

To recap: the SFA10000, which the company unveiled at the International Supercomputing Conference in June, represented a design shift toward using commodity server-type hardware in its high-end storage platform. According to the company, embedding file system support in the SFA enclosure is just the first step toward the development of a unified multi-platform architecture.

The SFA10000 uses Intel Nehalem CPUs, DDR3 memory, and PCIe 2.0 as its foundational hardware. The design is based on a controller couplet pair that can support SATA, SAS, as well as SSD devices. At max capacity (using SATA drives) a single controller pair can drive 2.4 petabytes of storage. Data throughput per enclosure is 10 GB/second.

But because the SFA10000 is using a big chunk of DRAM for I/O caching along with the latest generation Intel CPU platform, it also is able to deliver lots of IOPS — up to 1 million to internal cache storage and up to 300 thousand IOPS to external disk. In a system with a full complement of SSDs, DDN expects that number to approach 400 to 500 IOPS, although as yet no such system has been built.

“The Nehalem with the newer QuickPath technology to connect the processors together, and with the embedded memory controller is very, very good at moving lots of small bits of data, and hence is very good at IOPS,” explains Josh Goldenhar, DDN’s director of product management.

A high IOPS capability has become increasingly important, since modern multicore servers — which, coincidentally are also based on x86 CPUs — are sending multiple simultaneous I/O requests to the storage system. The result is that even sequential I/O ends up looking like random I/O at the storage end, thus the need for high IOPS on top of high throughput.

Since DDN’s new storage architecture encompasses what is essentially a server platform, the company can now use it to bring applications inside. The low-hanging fruit is to add clustered file storage applications, specifically, the options to include a Lustre-based or IBM’s GPFS-based file system on top of the platform’s block storage. This will be implemented via DDN’s ExaScaler platform (for Lustre) and its GridScaler platform (for GPFS). The integrated parallel file system/block storage platform will be sold as the SFA10000E.

According to Goldenhar, the big win here is being able to consolidate the file system server clients, network switches, and storage arrays into a single platform. “The goal for the Storage Fusion Architecture, from the beginning, has been to be able to collapse multiple layers of infrastructure into the storage itself,” he says.

In addition, since the network layer, along with the ensuing protocol translations and data copying, has been eliminated, performance, especially latency, stands to be much improved. With the file system and block storage controller sharing DRAM, DDN has been able to map file reads and writes directly to the same memory used by the DDN RAID stack. On each controller in the enclosure, one of the quad-core Nehalem CPUs runs the DDN RAID stack plus manages the SAS HBAs, while the other CPU is available as an application processor, in this case, to run Lustre or GPFS processes. According to Goldenhar this is done via a virtualization scheme, such that Lustre, GPFS, and the network drivers can run unmodified. But, he says, this is implemented in such a way as not to introduce any significant overhead.

The fact that the storage filers are embedded in the platform should reduce datacenter operational costs significantly, given that a significant chunk of server and network complexity has been squeezed out. That should translate directly into lower requirements for power, cooling, and floor space, as well as reduced management. “We think you’ll be able to build the next generation of multi-petaflop computers using far fewer components,” says Goldenhar. Acquisition cost should be somewhat lower as well and be competitively priced, he adds, although at this point DDN has not offered a price list. The SFA10000E products will be generally available in the first quarter of 2010.

In the second half of 2010, DDN is planning to do a lot more with flash memory technology. In the current SFA offering, flash, in the form of SSDs, are only supported as plug-in replacements for spinning disks. But the packaging around the flash chips that turns a memory product into a storage drive product undercuts some of the potential performance of the technology. Goldenhar says that they intend to put flash memory “a lot closer to the controller,” although he wouldn’t divulge if they’re looking at a PCIe flash design, flash DIMMs, or some as yet undefined solution.

In the longer term, the company is intending to open up the SFA architecture in a much more generalized way, but specifically for end-user applications and storage server virtualization. The rationale is the same as for the embedded filer solution: to enable tighter integration between applications and storage. For example, if a particular storage system is being used for checkpointing, a user might want to take advantage of the idle processors after a checkpoint completes to perform data reduction or to determine if the solution is converging. At this point, DDN is looking to support Linux, Windows, and perhaps even OpenSolaris applications, and is planning to include this support toward the end of 2010.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This