SGI Colors New Shared Memory Machines Ultraviolet

By Michael Feldman

November 16, 2009

After what may be the longest development cycle ever for a supercomputer, SGI has unveiled the first commercial implementation of its Ultraviolet architecture. The company first announced “Project Ultraviolet” at SC03. Now six years later, it has launched Altix UV, the company’s first scale-up HPC system based on x86 technology. The Altix UV’s connection to the 2003 design is tenuous at best, but the new architecture does fulfill Ultraviolet’s original promise of delivering a shared memory architecture able to scale from a few sockets all the way up to a petascale supercomputer.

SGI Altix UV

Besides being simpler to program than distributed memory clusters, shared memory systems are especially well suited to I/O bound and memory-bound applications; codes that depend upon a lot of inter-processor communication; and any type of application that uses large — as in terabyte-sized — in-memory databases. These shared memory systems can also be used in conjunction with large clusters to provide an “analysis supernode.”

The two initial products, the Altix UV 1000 and Altix UV 100, are both based on Intel Nehalem-equipped blades, which are hooked together with SGI’s 5th generation NUMAlink fabric. The software stack includes everything from the OS on up, including the SGI Foundation Software, data management packages (XFS, CXFS, DMF), SGI’s ProPack and System Management tools, job schedulers (Altair PBSP and Moab) and developer tools and libraries. The machines come with either SUSE Linux Enterprise Server or Red Hat Enterprise Linux.

The blades themselves contain two eight-core Nehalem EX chips, each with a bank of four DDR3 memory channels. If a larger memory to core ratio is desired, there are 6- and 4-core options, as well as a single-socket configuration. An optional I/O riser allows for a choice of expansion slots or external I/O ports. Up to two PCIe slots are available on each blade and these can be used to plug in external storage (SGI or otherwise) or GPGPUs.

SGI’s secret sauce is the UV hub, which sits on each blade and acts as the node controller. The hub, along with the NUMAlink 5 interconnect, is the technology that makes the supersized shared memory possible. The new interconnect delivers sub-microsecond latencies and 15.0 GB/sec of aggregate bandwidth per blade. The hub itself manages data traffic between the local CPU resources and the rest of the system, arbitrating between the local QuickPath Interconnect (QPI) links and the NUMAlink fabric.

According to Jill Matzke, Altix product manager, the SGI engineers decided to limit themselves to two sockets per blade in order to avoid overtaxing the QPI bandwidth, which needs to feed the NUMAlink fabric and I/O. Since Nehalem EX is designed to support up to 8 sockets per board, one might wonder why SGI didn’t opt for the dual-socket-capable Nehalem EP chips. Apparently, EX was chosen because it offered more QPI and memory bandwidth, both of which were essential to the UV design. In any case, the Nehalem EP design does not lend itself to external node controllers, such as the UV hub.

The Altix UV 100 is aimed at the mid-range market, scaling from a single 3U rackmount unit containing two dual-socket blades, up to a 7 teraflop, 96-socket machine that fits into a couple of racks. The upper limit on memory capacity on this product is 6 TB. The UV 100 is aimed at users who need a moderate to large SMP environment for their x86 applications. At the maximum 96-socket configuration, 768 cores are available, which doubles to 1,536 threads thanks to Nehalem-style multithreading support.

The Altix UV 1000 is a cabinet solution that scales all the way to the top, that is, 256 sockets (yielding 2,048 cores or 4,096 threads) and 16 TB of memory. At the max configuration, this model delivers 18.6 peak teraflops in a 42U space. The 16 TB limit on the UV 1000 corresponds to the maximum memory reach of the Intel Nehalem processor. However, the UV 1000 design can actually scale beyond this limit by connecting multiple 256-socket systems in a 2-D torus topology. In this case, the system would be partitioned with multiple OS images but support a much larger shared global address space — up into petabytes. The upper limit supported by the UV hub is 32,768 sockets, which would equate to about 2 petaflops. SGI is certainly willing to help interested parties develop such systems, but the vast majority of customers will be able to fit their applications within the 256-socket, single system image machine.

Note the current Itanium-based Altix 4700 reaches to 128 GB because that CPU’s memory address is wider, although core count on those systems tops out at 1024. That said, just getting a handful of terabytes of global memory on an x86 platform is likely to be a big attraction for HPC users. “We are seeing people ordering many more terabytes of memory on UV than they ever did on Altix with Itanium, simply because of the overall capability and the price-performance,” says Matzke.

Although UV supports highly-scaled applications in a global memory model, today the majority of global memory applications scale to just 32 or maybe 64 threads. However, UV, like most shared memory machines, can also deliver great performance for MPI applications by properly exploiting the unified memory and the speed of the interconnect fabric. Moreover, an MPI offload engine has been incorporated into the UV hub to further accelerate this class of applications. SGI has demonstrated a 3X improvement in the HPCC GUPS benchmark with the offload engine enabled. According to Matzke, “70 percent of the people that buy these systems are running MPI, but have other application demands that make it really shine on this kind of an architecture.”

According to Geoffrey Noer, SGI’s senior director of product marketing, the company is currently taking orders for the new UV machines, with the first shipments expected by second quarter of 2010 (following Intel’s release of the Nehalem EX CPUs). Initial customers include the University of Tennessee (1024 cores, 4 TB memory), the North German Supercomputing Alliance, known as HLRN (two systems, 4,352 cores, 18 TB memory), CALMIP in France (128 cores, 1 TB memory), and the University of Hokkaido (180 cores, 360 GB memory). A number of UV systems have also been purchased by the federal government for certain “defense applications” (which shall remain nameless). SGI is not making UV pricing public, but potential buyers can always obtain a quote under NDA.

Although many customers using Itanium Altix systems will undoubtedly transition to the x86 UV platform, Noer says SGI will continue to offer the Altix 450 and 4700 systems. And even though they are not publicly divulging specific plans for future Itanium-based shared memory machines, Noer did have this to offer: “It’s important not to look at Altix UV as a direct replacement for the 4700…. We are working with Intel on next-generation processor technologies as well.  For those customers that are getting the benefits out of the larger address space and benefits with the 4700, they absolutely don’t need to switch to Altix UV.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This