SGI Colors New Shared Memory Machines Ultraviolet

By Michael Feldman

November 16, 2009

After what may be the longest development cycle ever for a supercomputer, SGI has unveiled the first commercial implementation of its Ultraviolet architecture. The company first announced “Project Ultraviolet” at SC03. Now six years later, it has launched Altix UV, the company’s first scale-up HPC system based on x86 technology. The Altix UV’s connection to the 2003 design is tenuous at best, but the new architecture does fulfill Ultraviolet’s original promise of delivering a shared memory architecture able to scale from a few sockets all the way up to a petascale supercomputer.

SGI Altix UV

Besides being simpler to program than distributed memory clusters, shared memory systems are especially well suited to I/O bound and memory-bound applications; codes that depend upon a lot of inter-processor communication; and any type of application that uses large — as in terabyte-sized — in-memory databases. These shared memory systems can also be used in conjunction with large clusters to provide an “analysis supernode.”

The two initial products, the Altix UV 1000 and Altix UV 100, are both based on Intel Nehalem-equipped blades, which are hooked together with SGI’s 5th generation NUMAlink fabric. The software stack includes everything from the OS on up, including the SGI Foundation Software, data management packages (XFS, CXFS, DMF), SGI’s ProPack and System Management tools, job schedulers (Altair PBSP and Moab) and developer tools and libraries. The machines come with either SUSE Linux Enterprise Server or Red Hat Enterprise Linux.

The blades themselves contain two eight-core Nehalem EX chips, each with a bank of four DDR3 memory channels. If a larger memory to core ratio is desired, there are 6- and 4-core options, as well as a single-socket configuration. An optional I/O riser allows for a choice of expansion slots or external I/O ports. Up to two PCIe slots are available on each blade and these can be used to plug in external storage (SGI or otherwise) or GPGPUs.

SGI’s secret sauce is the UV hub, which sits on each blade and acts as the node controller. The hub, along with the NUMAlink 5 interconnect, is the technology that makes the supersized shared memory possible. The new interconnect delivers sub-microsecond latencies and 15.0 GB/sec of aggregate bandwidth per blade. The hub itself manages data traffic between the local CPU resources and the rest of the system, arbitrating between the local QuickPath Interconnect (QPI) links and the NUMAlink fabric.

According to Jill Matzke, Altix product manager, the SGI engineers decided to limit themselves to two sockets per blade in order to avoid overtaxing the QPI bandwidth, which needs to feed the NUMAlink fabric and I/O. Since Nehalem EX is designed to support up to 8 sockets per board, one might wonder why SGI didn’t opt for the dual-socket-capable Nehalem EP chips. Apparently, EX was chosen because it offered more QPI and memory bandwidth, both of which were essential to the UV design. In any case, the Nehalem EP design does not lend itself to external node controllers, such as the UV hub.

The Altix UV 100 is aimed at the mid-range market, scaling from a single 3U rackmount unit containing two dual-socket blades, up to a 7 teraflop, 96-socket machine that fits into a couple of racks. The upper limit on memory capacity on this product is 6 TB. The UV 100 is aimed at users who need a moderate to large SMP environment for their x86 applications. At the maximum 96-socket configuration, 768 cores are available, which doubles to 1,536 threads thanks to Nehalem-style multithreading support.

The Altix UV 1000 is a cabinet solution that scales all the way to the top, that is, 256 sockets (yielding 2,048 cores or 4,096 threads) and 16 TB of memory. At the max configuration, this model delivers 18.6 peak teraflops in a 42U space. The 16 TB limit on the UV 1000 corresponds to the maximum memory reach of the Intel Nehalem processor. However, the UV 1000 design can actually scale beyond this limit by connecting multiple 256-socket systems in a 2-D torus topology. In this case, the system would be partitioned with multiple OS images but support a much larger shared global address space — up into petabytes. The upper limit supported by the UV hub is 32,768 sockets, which would equate to about 2 petaflops. SGI is certainly willing to help interested parties develop such systems, but the vast majority of customers will be able to fit their applications within the 256-socket, single system image machine.

Note the current Itanium-based Altix 4700 reaches to 128 GB because that CPU’s memory address is wider, although core count on those systems tops out at 1024. That said, just getting a handful of terabytes of global memory on an x86 platform is likely to be a big attraction for HPC users. “We are seeing people ordering many more terabytes of memory on UV than they ever did on Altix with Itanium, simply because of the overall capability and the price-performance,” says Matzke.

Although UV supports highly-scaled applications in a global memory model, today the majority of global memory applications scale to just 32 or maybe 64 threads. However, UV, like most shared memory machines, can also deliver great performance for MPI applications by properly exploiting the unified memory and the speed of the interconnect fabric. Moreover, an MPI offload engine has been incorporated into the UV hub to further accelerate this class of applications. SGI has demonstrated a 3X improvement in the HPCC GUPS benchmark with the offload engine enabled. According to Matzke, “70 percent of the people that buy these systems are running MPI, but have other application demands that make it really shine on this kind of an architecture.”

According to Geoffrey Noer, SGI’s senior director of product marketing, the company is currently taking orders for the new UV machines, with the first shipments expected by second quarter of 2010 (following Intel’s release of the Nehalem EX CPUs). Initial customers include the University of Tennessee (1024 cores, 4 TB memory), the North German Supercomputing Alliance, known as HLRN (two systems, 4,352 cores, 18 TB memory), CALMIP in France (128 cores, 1 TB memory), and the University of Hokkaido (180 cores, 360 GB memory). A number of UV systems have also been purchased by the federal government for certain “defense applications” (which shall remain nameless). SGI is not making UV pricing public, but potential buyers can always obtain a quote under NDA.

Although many customers using Itanium Altix systems will undoubtedly transition to the x86 UV platform, Noer says SGI will continue to offer the Altix 450 and 4700 systems. And even though they are not publicly divulging specific plans for future Itanium-based shared memory machines, Noer did have this to offer: “It’s important not to look at Altix UV as a direct replacement for the 4700…. We are working with Intel on next-generation processor technologies as well.  For those customers that are getting the benefits out of the larger address space and benefits with the 4700, they absolutely don’t need to switch to Altix UV.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

First Xeon-FPGA Integration Launched by Intel

May 22, 2018

Ever since Intel’s acquisition of FPGA specialist Altera in 2015 for $16.7 billion, it’s been widely acknowledged that some day, Intel would release a processor that integrates its mainstream Xeon CPU server chip wit Read more…

By Doug Black

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This