SGI Colors New Shared Memory Machines Ultraviolet

By Michael Feldman

November 16, 2009

After what may be the longest development cycle ever for a supercomputer, SGI has unveiled the first commercial implementation of its Ultraviolet architecture. The company first announced “Project Ultraviolet” at SC03. Now six years later, it has launched Altix UV, the company’s first scale-up HPC system based on x86 technology. The Altix UV’s connection to the 2003 design is tenuous at best, but the new architecture does fulfill Ultraviolet’s original promise of delivering a shared memory architecture able to scale from a few sockets all the way up to a petascale supercomputer.

SGI Altix UV

Besides being simpler to program than distributed memory clusters, shared memory systems are especially well suited to I/O bound and memory-bound applications; codes that depend upon a lot of inter-processor communication; and any type of application that uses large — as in terabyte-sized — in-memory databases. These shared memory systems can also be used in conjunction with large clusters to provide an “analysis supernode.”

The two initial products, the Altix UV 1000 and Altix UV 100, are both based on Intel Nehalem-equipped blades, which are hooked together with SGI’s 5th generation NUMAlink fabric. The software stack includes everything from the OS on up, including the SGI Foundation Software, data management packages (XFS, CXFS, DMF), SGI’s ProPack and System Management tools, job schedulers (Altair PBSP and Moab) and developer tools and libraries. The machines come with either SUSE Linux Enterprise Server or Red Hat Enterprise Linux.

The blades themselves contain two eight-core Nehalem EX chips, each with a bank of four DDR3 memory channels. If a larger memory to core ratio is desired, there are 6- and 4-core options, as well as a single-socket configuration. An optional I/O riser allows for a choice of expansion slots or external I/O ports. Up to two PCIe slots are available on each blade and these can be used to plug in external storage (SGI or otherwise) or GPGPUs.

SGI’s secret sauce is the UV hub, which sits on each blade and acts as the node controller. The hub, along with the NUMAlink 5 interconnect, is the technology that makes the supersized shared memory possible. The new interconnect delivers sub-microsecond latencies and 15.0 GB/sec of aggregate bandwidth per blade. The hub itself manages data traffic between the local CPU resources and the rest of the system, arbitrating between the local QuickPath Interconnect (QPI) links and the NUMAlink fabric.

According to Jill Matzke, Altix product manager, the SGI engineers decided to limit themselves to two sockets per blade in order to avoid overtaxing the QPI bandwidth, which needs to feed the NUMAlink fabric and I/O. Since Nehalem EX is designed to support up to 8 sockets per board, one might wonder why SGI didn’t opt for the dual-socket-capable Nehalem EP chips. Apparently, EX was chosen because it offered more QPI and memory bandwidth, both of which were essential to the UV design. In any case, the Nehalem EP design does not lend itself to external node controllers, such as the UV hub.

The Altix UV 100 is aimed at the mid-range market, scaling from a single 3U rackmount unit containing two dual-socket blades, up to a 7 teraflop, 96-socket machine that fits into a couple of racks. The upper limit on memory capacity on this product is 6 TB. The UV 100 is aimed at users who need a moderate to large SMP environment for their x86 applications. At the maximum 96-socket configuration, 768 cores are available, which doubles to 1,536 threads thanks to Nehalem-style multithreading support.

The Altix UV 1000 is a cabinet solution that scales all the way to the top, that is, 256 sockets (yielding 2,048 cores or 4,096 threads) and 16 TB of memory. At the max configuration, this model delivers 18.6 peak teraflops in a 42U space. The 16 TB limit on the UV 1000 corresponds to the maximum memory reach of the Intel Nehalem processor. However, the UV 1000 design can actually scale beyond this limit by connecting multiple 256-socket systems in a 2-D torus topology. In this case, the system would be partitioned with multiple OS images but support a much larger shared global address space — up into petabytes. The upper limit supported by the UV hub is 32,768 sockets, which would equate to about 2 petaflops. SGI is certainly willing to help interested parties develop such systems, but the vast majority of customers will be able to fit their applications within the 256-socket, single system image machine.

Note the current Itanium-based Altix 4700 reaches to 128 GB because that CPU’s memory address is wider, although core count on those systems tops out at 1024. That said, just getting a handful of terabytes of global memory on an x86 platform is likely to be a big attraction for HPC users. “We are seeing people ordering many more terabytes of memory on UV than they ever did on Altix with Itanium, simply because of the overall capability and the price-performance,” says Matzke.

Although UV supports highly-scaled applications in a global memory model, today the majority of global memory applications scale to just 32 or maybe 64 threads. However, UV, like most shared memory machines, can also deliver great performance for MPI applications by properly exploiting the unified memory and the speed of the interconnect fabric. Moreover, an MPI offload engine has been incorporated into the UV hub to further accelerate this class of applications. SGI has demonstrated a 3X improvement in the HPCC GUPS benchmark with the offload engine enabled. According to Matzke, “70 percent of the people that buy these systems are running MPI, but have other application demands that make it really shine on this kind of an architecture.”

According to Geoffrey Noer, SGI’s senior director of product marketing, the company is currently taking orders for the new UV machines, with the first shipments expected by second quarter of 2010 (following Intel’s release of the Nehalem EX CPUs). Initial customers include the University of Tennessee (1024 cores, 4 TB memory), the North German Supercomputing Alliance, known as HLRN (two systems, 4,352 cores, 18 TB memory), CALMIP in France (128 cores, 1 TB memory), and the University of Hokkaido (180 cores, 360 GB memory). A number of UV systems have also been purchased by the federal government for certain “defense applications” (which shall remain nameless). SGI is not making UV pricing public, but potential buyers can always obtain a quote under NDA.

Although many customers using Itanium Altix systems will undoubtedly transition to the x86 UV platform, Noer says SGI will continue to offer the Altix 450 and 4700 systems. And even though they are not publicly divulging specific plans for future Itanium-based shared memory machines, Noer did have this to offer: “It’s important not to look at Altix UV as a direct replacement for the 4700…. We are working with Intel on next-generation processor technologies as well.  For those customers that are getting the benefits out of the larger address space and benefits with the 4700, they absolutely don’t need to switch to Altix UV.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This