Mitrionics Looks Beyond FPGAs

By Nicole Hemsoth

November 18, 2009

At SC09 this week, Mitrionics announced it has started to work on an experimental compiler that aims to make parallel programming architecture-agnostic. The goal of the work is to extend the Mitrion-C platform for FPGAs to multicore CPUs, cluster architectures, and eventually even GPGPUs.  We asked Stefan Möhl, Mitrionics’ chief science officer and co-founder, to explain what’s behind the new technology and what prompted the decision to add support for other parallel architectures.

HPCwire: Can you tell us about the new programming capabilities of the Mitrionics platform that you announced here at the Supercomputing Conference?

Stefan Möhl: Well, we haven’t added new programming capabilities to the Mitrionics’ Accelerated Computing Platform yet. We are still in the proof-of-concept stage with this new compiler, but things look very promising. For this proof-of-concept compiler, the news is that existing Mitrion-C code, originally written for the MVP on FPGAs, will now also run on multicores and clusters. This initial proof-of-concept was made only to prove that the basic principles work, so there are limits to what code we can currently run. A production version of a portable programming language will require changes to Mitrion-C to make it less focused on what is needed for FPGA acceleration.

HPCwire: How does it work?

Möhl: The main challenge when porting between parallel architectures is that the level of granularity of the parallelism differs. For example, to parallelize code for vector processors, you would have to parallelize inner-most loops. To parallelize code for clusters, you would have to parallelize the outer-most loops. Doing general automatic parallelization (parallelization without re-writing the code) has not been solved, even after decades of research. Nor is there a general automatic way to transform one kind of parallelism into another.

Mitrion-C was originally developed as a programming language for the Mitrion Virtual Processor (MVP). The MVP is a hardware design for a compute engine specifically developed for high-performance execution in FPGAs. As such, it is full MIMD ((Multiple Instruction stream, Multiple Data stream) at the individual instruction level, so it potentially executes every single instruction of the program in parallel. This can be thought of as a limit-case for parallelism. Mitrion-C is a C-family language that supports and aids the programmer in specifying the kind of parallelism that the MVP requires. It is roughly as similar to ANSI-C as Java or C# are, so it isn’t too unusual to use.

The trick that makes Mitrion-C work for parallel portability comes from an important asymmetry in parallelization. Though automatic parallelization without code re-writes is very hard to achieve, general automatic sequentialization is much, much easier. Trivially, operating systems have run multiple programs in parallel on sequential processors for many years. For efficient execution, there are of course many optimization considerations, but it is still much easier than automatic parallelization. This property is what we use to port Mitrion-C between platforms. Since the code is fully parallel from the start, we never parallelize at all, we only sequentialize. So for a cluster, instead of parallelizing outer-most loops, we sequentialize everything except the outer-most loops. And for a vector processor, we sequentialize everything except for the inner-most loops.

HPCwire: So if you don’t have the parallelization problem, how can you handle the various memory architectures of multicore CPUs, GPGPUs and clusters, and so on?

Möhl: Our FPGA background has required us to consider these issues carefully from the start. FPGAs are usually connected to the system on data buses designed for devices with an order of magnitude less performance than FPGAs. So Mitrion-C was designed from the start to allow programmers to manage both memory latency and raw memory bandwidth in an effective manner. This issue will become increasingly important also for multicores and manycores, since increasing core counts without increasing clock-frequencies of data buses will put them in the same situation FPGAs have always been in.

Another important aspect comes from the diversity of FPGA cards. There are almost no two FPGA cards with the same memory sub-system, so we had to design Mitrion-C to have a memory model that addresses this from the start.

In Mitrion-C, there is no assumption of a single monolithic memory space. Instead, each collection may have its own address space, and different ones for different memory size and bandwidth requirements. This allows programmers to manually stage data from few, large and slow memories to many, small and fast memories in any number of levels. There are also several different built-in types for multi-dimensional data collections that let programmers specify what kind of access patterns a collection should permit. This helps the programmer in making correct and efficient programs, and also lets the compiler know what types of memory to place the data collection in. Of course, you can still write a program that requires more, larger or faster memories than a particular system has, but Mitrion-C will at least make you aware of what you demand of the system.

HPCwire: Can the exact same Mitrion-C source code be compiled to any of target architectures?

Möhl: Yes. You will need to parameterize for the number of cores you want to run on in a cluster or multicore, or how much unroll you want for loops in an FPGA, but other than that, the same code works without changes. However, not all algorithms will be efficient on all architectures, so the programmer will in some cases need to consider what platform to run the algorithms in, or change the algorithms to suit the available platform.

HPCwire: Mitrionics has focused on FPGA software development since its inception in 2001. What prompted the decision to target other architectures?

Möhl: Well, we are actually still focused on FPGAs. What prompted this is a customer interest in running Mitrion-C on standard processors and not only the Mitrion Virtual Processor. Customers want to be able to write an algorithm once and make efficient use of it on systems with and without FPGAs. They would also like to avoid having their code “locked in” to FPGAs. So we set up an experiment at Mitrionics to see what can be done with Mitrion-C on other platforms. And, as it turns out, very much can be done!

HPCwire: There are already a number of programming environments and languages that target multicore CPUs and GPGPUs and clusters. What does Mitrionics brings to the table?

Möhl: Three main things. First, Mitrion-C is a single, coherent language that maintains the same style of programming regardless of what platform you run it on. Programming languages like MPI, OpenMP, OpenCL and CUDA are really several different languages mixed together. There is the base-line C-code which is purely sequential, then there are added parts for clusters (in the case of MPI), multicores (in the case of OpenMP), or GPUs (in the case of OpenCL and CUDA). Often, you even have to combine them, such as with MPI+OpenMP. The additions introduce completely different ways of doing things than what the sequential C code does. They are not just added syntax in the sequential C paradigm. That means that you are really writing in several different languages at the same time, and need to learn them all to be able to do it properly. It also complicates the code dramatically.

Second, the fact that you have separate syntax for each architecture means that you need to re-write your code to move it between architectures. With our solution, software developers can make a single investment in writing code, and then use it on any architecture depending on what is optimal under current circumstances. With a universal programming language that can be used to target any architecture without changing syntax, it also becomes possible to explore the benefits and possibilities of different architectures much faster, in the end resulting in more efficient code.

Finally, and perhaps most tantalizing, is that the portability is not limited to the architectures that are popular today. History has seen a wide range of architectures — from the old scalar processors, vector processors, Thinking Machines, MasPar and SIMD, the Multi-Threaded Architecture, large shared memory machines, MPPs, and clusters to today’s FPGAs, GPUs, Cell, multicores and several others. Each new generation has required code re-writes. Though this is not yet proven, there is good hope that Mitrion-C would be efficient without re-writes on most of the historical popular parallel architectures. If that is the case, it bodes well for parallel architectures of the future too. Though we probably won’t be able to say “Never again!” to re-writes for all eternity, Mitrion-C holds the promise of dramatically reduce the number of re-writes we will need to do in the future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Expands Worldwide Availability to AMD-based Instances

July 22, 2019

Setting aside potential setbacks caused by U.S. trade policies, the steady cadence of AMD’s revival in HPC and the datacenter continued last week with AWS expanding availability of its AMD Epyc-based instances. Recall Read more…

By Staff

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billion investment in OpenAI, the not-for-profit research organi Read more…

By Doug Black

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

With HPC the Future is Looking Grid

Gone are the days when problems such as unraveling genetic sequences or searching for extra-terrestrial life were solved using only a single high-performance computing (HPC) resource located at one facility. Read more…

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billi Read more…

By Doug Black

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This