Mitrionics Looks Beyond FPGAs

By Nicole Hemsoth

November 18, 2009

At SC09 this week, Mitrionics announced it has started to work on an experimental compiler that aims to make parallel programming architecture-agnostic. The goal of the work is to extend the Mitrion-C platform for FPGAs to multicore CPUs, cluster architectures, and eventually even GPGPUs.  We asked Stefan Möhl, Mitrionics’ chief science officer and co-founder, to explain what’s behind the new technology and what prompted the decision to add support for other parallel architectures.

HPCwire: Can you tell us about the new programming capabilities of the Mitrionics platform that you announced here at the Supercomputing Conference?

Stefan Möhl: Well, we haven’t added new programming capabilities to the Mitrionics’ Accelerated Computing Platform yet. We are still in the proof-of-concept stage with this new compiler, but things look very promising. For this proof-of-concept compiler, the news is that existing Mitrion-C code, originally written for the MVP on FPGAs, will now also run on multicores and clusters. This initial proof-of-concept was made only to prove that the basic principles work, so there are limits to what code we can currently run. A production version of a portable programming language will require changes to Mitrion-C to make it less focused on what is needed for FPGA acceleration.

HPCwire: How does it work?

Möhl: The main challenge when porting between parallel architectures is that the level of granularity of the parallelism differs. For example, to parallelize code for vector processors, you would have to parallelize inner-most loops. To parallelize code for clusters, you would have to parallelize the outer-most loops. Doing general automatic parallelization (parallelization without re-writing the code) has not been solved, even after decades of research. Nor is there a general automatic way to transform one kind of parallelism into another.

Mitrion-C was originally developed as a programming language for the Mitrion Virtual Processor (MVP). The MVP is a hardware design for a compute engine specifically developed for high-performance execution in FPGAs. As such, it is full MIMD ((Multiple Instruction stream, Multiple Data stream) at the individual instruction level, so it potentially executes every single instruction of the program in parallel. This can be thought of as a limit-case for parallelism. Mitrion-C is a C-family language that supports and aids the programmer in specifying the kind of parallelism that the MVP requires. It is roughly as similar to ANSI-C as Java or C# are, so it isn’t too unusual to use.

The trick that makes Mitrion-C work for parallel portability comes from an important asymmetry in parallelization. Though automatic parallelization without code re-writes is very hard to achieve, general automatic sequentialization is much, much easier. Trivially, operating systems have run multiple programs in parallel on sequential processors for many years. For efficient execution, there are of course many optimization considerations, but it is still much easier than automatic parallelization. This property is what we use to port Mitrion-C between platforms. Since the code is fully parallel from the start, we never parallelize at all, we only sequentialize. So for a cluster, instead of parallelizing outer-most loops, we sequentialize everything except the outer-most loops. And for a vector processor, we sequentialize everything except for the inner-most loops.

HPCwire: So if you don’t have the parallelization problem, how can you handle the various memory architectures of multicore CPUs, GPGPUs and clusters, and so on?

Möhl: Our FPGA background has required us to consider these issues carefully from the start. FPGAs are usually connected to the system on data buses designed for devices with an order of magnitude less performance than FPGAs. So Mitrion-C was designed from the start to allow programmers to manage both memory latency and raw memory bandwidth in an effective manner. This issue will become increasingly important also for multicores and manycores, since increasing core counts without increasing clock-frequencies of data buses will put them in the same situation FPGAs have always been in.

Another important aspect comes from the diversity of FPGA cards. There are almost no two FPGA cards with the same memory sub-system, so we had to design Mitrion-C to have a memory model that addresses this from the start.

In Mitrion-C, there is no assumption of a single monolithic memory space. Instead, each collection may have its own address space, and different ones for different memory size and bandwidth requirements. This allows programmers to manually stage data from few, large and slow memories to many, small and fast memories in any number of levels. There are also several different built-in types for multi-dimensional data collections that let programmers specify what kind of access patterns a collection should permit. This helps the programmer in making correct and efficient programs, and also lets the compiler know what types of memory to place the data collection in. Of course, you can still write a program that requires more, larger or faster memories than a particular system has, but Mitrion-C will at least make you aware of what you demand of the system.

HPCwire: Can the exact same Mitrion-C source code be compiled to any of target architectures?

Möhl: Yes. You will need to parameterize for the number of cores you want to run on in a cluster or multicore, or how much unroll you want for loops in an FPGA, but other than that, the same code works without changes. However, not all algorithms will be efficient on all architectures, so the programmer will in some cases need to consider what platform to run the algorithms in, or change the algorithms to suit the available platform.

HPCwire: Mitrionics has focused on FPGA software development since its inception in 2001. What prompted the decision to target other architectures?

Möhl: Well, we are actually still focused on FPGAs. What prompted this is a customer interest in running Mitrion-C on standard processors and not only the Mitrion Virtual Processor. Customers want to be able to write an algorithm once and make efficient use of it on systems with and without FPGAs. They would also like to avoid having their code “locked in” to FPGAs. So we set up an experiment at Mitrionics to see what can be done with Mitrion-C on other platforms. And, as it turns out, very much can be done!

HPCwire: There are already a number of programming environments and languages that target multicore CPUs and GPGPUs and clusters. What does Mitrionics brings to the table?

Möhl: Three main things. First, Mitrion-C is a single, coherent language that maintains the same style of programming regardless of what platform you run it on. Programming languages like MPI, OpenMP, OpenCL and CUDA are really several different languages mixed together. There is the base-line C-code which is purely sequential, then there are added parts for clusters (in the case of MPI), multicores (in the case of OpenMP), or GPUs (in the case of OpenCL and CUDA). Often, you even have to combine them, such as with MPI+OpenMP. The additions introduce completely different ways of doing things than what the sequential C code does. They are not just added syntax in the sequential C paradigm. That means that you are really writing in several different languages at the same time, and need to learn them all to be able to do it properly. It also complicates the code dramatically.

Second, the fact that you have separate syntax for each architecture means that you need to re-write your code to move it between architectures. With our solution, software developers can make a single investment in writing code, and then use it on any architecture depending on what is optimal under current circumstances. With a universal programming language that can be used to target any architecture without changing syntax, it also becomes possible to explore the benefits and possibilities of different architectures much faster, in the end resulting in more efficient code.

Finally, and perhaps most tantalizing, is that the portability is not limited to the architectures that are popular today. History has seen a wide range of architectures — from the old scalar processors, vector processors, Thinking Machines, MasPar and SIMD, the Multi-Threaded Architecture, large shared memory machines, MPPs, and clusters to today’s FPGAs, GPUs, Cell, multicores and several others. Each new generation has required code re-writes. Though this is not yet proven, there is good hope that Mitrion-C would be efficient without re-writes on most of the historical popular parallel architectures. If that is the case, it bodes well for parallel architectures of the future too. Though we probably won’t be able to say “Never again!” to re-writes for all eternity, Mitrion-C holds the promise of dramatically reduce the number of re-writes we will need to do in the future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This