Mitrionics Looks Beyond FPGAs

By Nicole Hemsoth

November 18, 2009

At SC09 this week, Mitrionics announced it has started to work on an experimental compiler that aims to make parallel programming architecture-agnostic. The goal of the work is to extend the Mitrion-C platform for FPGAs to multicore CPUs, cluster architectures, and eventually even GPGPUs.  We asked Stefan Möhl, Mitrionics’ chief science officer and co-founder, to explain what’s behind the new technology and what prompted the decision to add support for other parallel architectures.

HPCwire: Can you tell us about the new programming capabilities of the Mitrionics platform that you announced here at the Supercomputing Conference?

Stefan Möhl: Well, we haven’t added new programming capabilities to the Mitrionics’ Accelerated Computing Platform yet. We are still in the proof-of-concept stage with this new compiler, but things look very promising. For this proof-of-concept compiler, the news is that existing Mitrion-C code, originally written for the MVP on FPGAs, will now also run on multicores and clusters. This initial proof-of-concept was made only to prove that the basic principles work, so there are limits to what code we can currently run. A production version of a portable programming language will require changes to Mitrion-C to make it less focused on what is needed for FPGA acceleration.

HPCwire: How does it work?

Möhl: The main challenge when porting between parallel architectures is that the level of granularity of the parallelism differs. For example, to parallelize code for vector processors, you would have to parallelize inner-most loops. To parallelize code for clusters, you would have to parallelize the outer-most loops. Doing general automatic parallelization (parallelization without re-writing the code) has not been solved, even after decades of research. Nor is there a general automatic way to transform one kind of parallelism into another.

Mitrion-C was originally developed as a programming language for the Mitrion Virtual Processor (MVP). The MVP is a hardware design for a compute engine specifically developed for high-performance execution in FPGAs. As such, it is full MIMD ((Multiple Instruction stream, Multiple Data stream) at the individual instruction level, so it potentially executes every single instruction of the program in parallel. This can be thought of as a limit-case for parallelism. Mitrion-C is a C-family language that supports and aids the programmer in specifying the kind of parallelism that the MVP requires. It is roughly as similar to ANSI-C as Java or C# are, so it isn’t too unusual to use.

The trick that makes Mitrion-C work for parallel portability comes from an important asymmetry in parallelization. Though automatic parallelization without code re-writes is very hard to achieve, general automatic sequentialization is much, much easier. Trivially, operating systems have run multiple programs in parallel on sequential processors for many years. For efficient execution, there are of course many optimization considerations, but it is still much easier than automatic parallelization. This property is what we use to port Mitrion-C between platforms. Since the code is fully parallel from the start, we never parallelize at all, we only sequentialize. So for a cluster, instead of parallelizing outer-most loops, we sequentialize everything except the outer-most loops. And for a vector processor, we sequentialize everything except for the inner-most loops.

HPCwire: So if you don’t have the parallelization problem, how can you handle the various memory architectures of multicore CPUs, GPGPUs and clusters, and so on?

Möhl: Our FPGA background has required us to consider these issues carefully from the start. FPGAs are usually connected to the system on data buses designed for devices with an order of magnitude less performance than FPGAs. So Mitrion-C was designed from the start to allow programmers to manage both memory latency and raw memory bandwidth in an effective manner. This issue will become increasingly important also for multicores and manycores, since increasing core counts without increasing clock-frequencies of data buses will put them in the same situation FPGAs have always been in.

Another important aspect comes from the diversity of FPGA cards. There are almost no two FPGA cards with the same memory sub-system, so we had to design Mitrion-C to have a memory model that addresses this from the start.

In Mitrion-C, there is no assumption of a single monolithic memory space. Instead, each collection may have its own address space, and different ones for different memory size and bandwidth requirements. This allows programmers to manually stage data from few, large and slow memories to many, small and fast memories in any number of levels. There are also several different built-in types for multi-dimensional data collections that let programmers specify what kind of access patterns a collection should permit. This helps the programmer in making correct and efficient programs, and also lets the compiler know what types of memory to place the data collection in. Of course, you can still write a program that requires more, larger or faster memories than a particular system has, but Mitrion-C will at least make you aware of what you demand of the system.

HPCwire: Can the exact same Mitrion-C source code be compiled to any of target architectures?

Möhl: Yes. You will need to parameterize for the number of cores you want to run on in a cluster or multicore, or how much unroll you want for loops in an FPGA, but other than that, the same code works without changes. However, not all algorithms will be efficient on all architectures, so the programmer will in some cases need to consider what platform to run the algorithms in, or change the algorithms to suit the available platform.

HPCwire: Mitrionics has focused on FPGA software development since its inception in 2001. What prompted the decision to target other architectures?

Möhl: Well, we are actually still focused on FPGAs. What prompted this is a customer interest in running Mitrion-C on standard processors and not only the Mitrion Virtual Processor. Customers want to be able to write an algorithm once and make efficient use of it on systems with and without FPGAs. They would also like to avoid having their code “locked in” to FPGAs. So we set up an experiment at Mitrionics to see what can be done with Mitrion-C on other platforms. And, as it turns out, very much can be done!

HPCwire: There are already a number of programming environments and languages that target multicore CPUs and GPGPUs and clusters. What does Mitrionics brings to the table?

Möhl: Three main things. First, Mitrion-C is a single, coherent language that maintains the same style of programming regardless of what platform you run it on. Programming languages like MPI, OpenMP, OpenCL and CUDA are really several different languages mixed together. There is the base-line C-code which is purely sequential, then there are added parts for clusters (in the case of MPI), multicores (in the case of OpenMP), or GPUs (in the case of OpenCL and CUDA). Often, you even have to combine them, such as with MPI+OpenMP. The additions introduce completely different ways of doing things than what the sequential C code does. They are not just added syntax in the sequential C paradigm. That means that you are really writing in several different languages at the same time, and need to learn them all to be able to do it properly. It also complicates the code dramatically.

Second, the fact that you have separate syntax for each architecture means that you need to re-write your code to move it between architectures. With our solution, software developers can make a single investment in writing code, and then use it on any architecture depending on what is optimal under current circumstances. With a universal programming language that can be used to target any architecture without changing syntax, it also becomes possible to explore the benefits and possibilities of different architectures much faster, in the end resulting in more efficient code.

Finally, and perhaps most tantalizing, is that the portability is not limited to the architectures that are popular today. History has seen a wide range of architectures — from the old scalar processors, vector processors, Thinking Machines, MasPar and SIMD, the Multi-Threaded Architecture, large shared memory machines, MPPs, and clusters to today’s FPGAs, GPUs, Cell, multicores and several others. Each new generation has required code re-writes. Though this is not yet proven, there is good hope that Mitrion-C would be efficient without re-writes on most of the historical popular parallel architectures. If that is the case, it bodes well for parallel architectures of the future too. Though we probably won’t be able to say “Never again!” to re-writes for all eternity, Mitrion-C holds the promise of dramatically reduce the number of re-writes we will need to do in the future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the global stage. Now, the Mohammed VI Polytechnic University (U Read more…

By Oliver Peckham

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

February 25, 2021

Energy researchers have been reaching for the stars for decades in their attempt to artificially recreate a stable fusion energy reactor. If successful, such a reactor would revolutionize the world’s energy supply over Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing system, called "Wisteria/BDEC-01," that will tackle simulati Read more…

By Tiffany Trader

President Biden Signs Executive Order to Review Chip, Other Supply Chains

February 24, 2021

U.S. President Biden signed an executive order late today calling for a 100-day review of key supply chains including semiconductors, large capacity batteries, pharmaceuticals, and rare-earth elements. The scarcity of ch Read more…

By John Russell

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

AWS Solution Channel

Introducing AWS HPC Tech Shorts

Amazon Web Services (AWS) is excited to announce a new videos series focused on running HPC workloads on AWS. This new video series will cover HPC workloads from genomics, computational chemistry, to computational fluid dynamics (CFD) and more. Read more…

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

IBM’s Prototype Low-Power 7nm AI Chip Offers ‘Precision Scaling’

February 23, 2021

IBM has released details of a prototype AI chip geared toward low-precision training and inference across different AI model types while retaining model quality within AI applications. In a paper delivered during this year’s International Solid-State Circuits Virtual Conference, IBM... Read more…

By George Leopold

IBM Continues Mainstreaming Power Systems and Integrating Red Hat in Pivot to Cloud

February 23, 2021

As IBM continues its massive pivot to the cloud, its Power-microprocessor-based products are being mainstreamed and realigned with the corporate-wide strategy. Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

ENIAC at 75: Celebrating the World’s First Supercomputer

February 15, 2021

With little fanfare, today’s computer revolution was arguably born and announced through a small, innocuous, two-column story at the bottom of the front page of The New York Times on Feb. 15, 1946. In that story and others, the previously classified project, ENIAC... Read more…

By Todd R. Weiss

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

By Todd R. Weiss

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

MIT Makes a Big Breakthrough in Nonsilicon Transistors

December 10, 2020

What if Silicon Valley moved beyond silicon? In the 80’s, Seymour Cray was asking the same question, delivering at Supercomputing 1988 a talk titled “What’s All This About Gallium Arsenide?” The supercomputing legend intended to make gallium arsenide (GaA) the material of the future... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire