Mitrionics Looks Beyond FPGAs

By Nicole Hemsoth

November 18, 2009

At SC09 this week, Mitrionics announced it has started to work on an experimental compiler that aims to make parallel programming architecture-agnostic. The goal of the work is to extend the Mitrion-C platform for FPGAs to multicore CPUs, cluster architectures, and eventually even GPGPUs.  We asked Stefan Möhl, Mitrionics’ chief science officer and co-founder, to explain what’s behind the new technology and what prompted the decision to add support for other parallel architectures.

HPCwire: Can you tell us about the new programming capabilities of the Mitrionics platform that you announced here at the Supercomputing Conference?

Stefan Möhl: Well, we haven’t added new programming capabilities to the Mitrionics’ Accelerated Computing Platform yet. We are still in the proof-of-concept stage with this new compiler, but things look very promising. For this proof-of-concept compiler, the news is that existing Mitrion-C code, originally written for the MVP on FPGAs, will now also run on multicores and clusters. This initial proof-of-concept was made only to prove that the basic principles work, so there are limits to what code we can currently run. A production version of a portable programming language will require changes to Mitrion-C to make it less focused on what is needed for FPGA acceleration.

HPCwire: How does it work?

Möhl: The main challenge when porting between parallel architectures is that the level of granularity of the parallelism differs. For example, to parallelize code for vector processors, you would have to parallelize inner-most loops. To parallelize code for clusters, you would have to parallelize the outer-most loops. Doing general automatic parallelization (parallelization without re-writing the code) has not been solved, even after decades of research. Nor is there a general automatic way to transform one kind of parallelism into another.

Mitrion-C was originally developed as a programming language for the Mitrion Virtual Processor (MVP). The MVP is a hardware design for a compute engine specifically developed for high-performance execution in FPGAs. As such, it is full MIMD ((Multiple Instruction stream, Multiple Data stream) at the individual instruction level, so it potentially executes every single instruction of the program in parallel. This can be thought of as a limit-case for parallelism. Mitrion-C is a C-family language that supports and aids the programmer in specifying the kind of parallelism that the MVP requires. It is roughly as similar to ANSI-C as Java or C# are, so it isn’t too unusual to use.

The trick that makes Mitrion-C work for parallel portability comes from an important asymmetry in parallelization. Though automatic parallelization without code re-writes is very hard to achieve, general automatic sequentialization is much, much easier. Trivially, operating systems have run multiple programs in parallel on sequential processors for many years. For efficient execution, there are of course many optimization considerations, but it is still much easier than automatic parallelization. This property is what we use to port Mitrion-C between platforms. Since the code is fully parallel from the start, we never parallelize at all, we only sequentialize. So for a cluster, instead of parallelizing outer-most loops, we sequentialize everything except the outer-most loops. And for a vector processor, we sequentialize everything except for the inner-most loops.

HPCwire: So if you don’t have the parallelization problem, how can you handle the various memory architectures of multicore CPUs, GPGPUs and clusters, and so on?

Möhl: Our FPGA background has required us to consider these issues carefully from the start. FPGAs are usually connected to the system on data buses designed for devices with an order of magnitude less performance than FPGAs. So Mitrion-C was designed from the start to allow programmers to manage both memory latency and raw memory bandwidth in an effective manner. This issue will become increasingly important also for multicores and manycores, since increasing core counts without increasing clock-frequencies of data buses will put them in the same situation FPGAs have always been in.

Another important aspect comes from the diversity of FPGA cards. There are almost no two FPGA cards with the same memory sub-system, so we had to design Mitrion-C to have a memory model that addresses this from the start.

In Mitrion-C, there is no assumption of a single monolithic memory space. Instead, each collection may have its own address space, and different ones for different memory size and bandwidth requirements. This allows programmers to manually stage data from few, large and slow memories to many, small and fast memories in any number of levels. There are also several different built-in types for multi-dimensional data collections that let programmers specify what kind of access patterns a collection should permit. This helps the programmer in making correct and efficient programs, and also lets the compiler know what types of memory to place the data collection in. Of course, you can still write a program that requires more, larger or faster memories than a particular system has, but Mitrion-C will at least make you aware of what you demand of the system.

HPCwire: Can the exact same Mitrion-C source code be compiled to any of target architectures?

Möhl: Yes. You will need to parameterize for the number of cores you want to run on in a cluster or multicore, or how much unroll you want for loops in an FPGA, but other than that, the same code works without changes. However, not all algorithms will be efficient on all architectures, so the programmer will in some cases need to consider what platform to run the algorithms in, or change the algorithms to suit the available platform.

HPCwire: Mitrionics has focused on FPGA software development since its inception in 2001. What prompted the decision to target other architectures?

Möhl: Well, we are actually still focused on FPGAs. What prompted this is a customer interest in running Mitrion-C on standard processors and not only the Mitrion Virtual Processor. Customers want to be able to write an algorithm once and make efficient use of it on systems with and without FPGAs. They would also like to avoid having their code “locked in” to FPGAs. So we set up an experiment at Mitrionics to see what can be done with Mitrion-C on other platforms. And, as it turns out, very much can be done!

HPCwire: There are already a number of programming environments and languages that target multicore CPUs and GPGPUs and clusters. What does Mitrionics brings to the table?

Möhl: Three main things. First, Mitrion-C is a single, coherent language that maintains the same style of programming regardless of what platform you run it on. Programming languages like MPI, OpenMP, OpenCL and CUDA are really several different languages mixed together. There is the base-line C-code which is purely sequential, then there are added parts for clusters (in the case of MPI), multicores (in the case of OpenMP), or GPUs (in the case of OpenCL and CUDA). Often, you even have to combine them, such as with MPI+OpenMP. The additions introduce completely different ways of doing things than what the sequential C code does. They are not just added syntax in the sequential C paradigm. That means that you are really writing in several different languages at the same time, and need to learn them all to be able to do it properly. It also complicates the code dramatically.

Second, the fact that you have separate syntax for each architecture means that you need to re-write your code to move it between architectures. With our solution, software developers can make a single investment in writing code, and then use it on any architecture depending on what is optimal under current circumstances. With a universal programming language that can be used to target any architecture without changing syntax, it also becomes possible to explore the benefits and possibilities of different architectures much faster, in the end resulting in more efficient code.

Finally, and perhaps most tantalizing, is that the portability is not limited to the architectures that are popular today. History has seen a wide range of architectures — from the old scalar processors, vector processors, Thinking Machines, MasPar and SIMD, the Multi-Threaded Architecture, large shared memory machines, MPPs, and clusters to today’s FPGAs, GPUs, Cell, multicores and several others. Each new generation has required code re-writes. Though this is not yet proven, there is good hope that Mitrion-C would be efficient without re-writes on most of the historical popular parallel architectures. If that is the case, it bodes well for parallel architectures of the future too. Though we probably won’t be able to say “Never again!” to re-writes for all eternity, Mitrion-C holds the promise of dramatically reduce the number of re-writes we will need to do in the future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Share This