Jaguar Scales TOP500

By Nicole Hemsoth

November 19, 2009

When first deployed in 2005, the Jaguar supercomputer at Oak Ridge National Lab booted up with a peak speed of only 26 teraflops. Since then it has been continuously enhanced with additional cabinets and new AMD Opteron processors. The latest upgrade involved replacing the quad-core Opteron chips with AMD’s latest six-core version, which propelled it to the number one spot on the newly announced TOP500 list.

With a Linpack mark of 1.759 petaflops, it outran the number two Roadrunner system by a good 750 teraflops. Jaguar also managed to come out on top in the HPC Challenge STREAM benchmark, with a sustainable memory bandwidth of 398 terabytes per second.

We asked John Fruehe, AMD’s director of Opteron product marketing, and Buddy Bland, the project director for the ORNL Leadership Computing Facility, about the significance of this accomplishment and what it means for the most demanding supercomputing applications.

HPCwire: What do you think is the significance of the first multi-petaflop machine powered purely by x86 CPUs?

John Fruehe: The number one position is really significant because it shows a culmination of supercomputing’s shift to industry-standard systems. These mammoth, world-class machines are no longer out of reach for the more average academic or enterprise HPC user. The market for a Cray XT5 or an Appro HyperCluster goes beyond the U.S. national labs and you see HPC customers monitoring regional weather patterns or searching out oil and gas reserves on the very same systems as what you have in the Top 10.

Let’s face it, most folks can’t go out and buy an Earth Simulator or a Blue Gene. x86 has made world-class supercomputing a lot more democratic. And of course, this number one win shows the raw processing capability of x86 and specifically AMD’s brand of x86 in the form of the game-changing Opteron processor. In the past, larger, more expensive and proprietary systems ruled the top of the chart. Today, more economical and scalable x86 platforms are rapidly becoming the norm for supercomputing and that gives customers more flexibility and choice.

HPCwire: In performance-per-watt, Jaguar still lags other more exotic supercomputing architectures. Given the escalating concern of energy efficiency in these large-scale machines, what does that say about the role of the x86 in future supercomputing systems?

Fruehe: Certainly an architecture like Cell is quite the power miser. But as we’ve seen with “Roadrunner,” frankly, the Cell architecture needs Opteron to get the job done. A system like “Jaguar” or any of the other systems that are near the top of the list are deployed to do a specific job. Many times, power is certainly a concern, but not the overriding concern.

For more mainstream HPC, I think we will continue to see x86 dominate because of economics and because it delivers the performance and is what the industry knows best. We’ll continue to see the additional low-power improvements that AMD is implementing — above and beyond what we’ve already done — take hold and bring HPC overall more in line with an acceptable level of power draw.

As AMD moves to its future generations, you will continue to see an emphasis on power efficiency in the data center as we continue to drive greater amounts of performance and scalability while staying within approximately the same power/thermal ranges, resulting in increasingly greater performance per watt with each generation.

HPCwire: Jaguar’s Linpack performance is certainly impressive. But what types of applications are going to be able to fully utilize the scale of this machine?

Buddy Bland: While Linpack is a test of the computational performance of computer systems, Jaguar was designed to run applications that are demanding on all of the aspects of the system. Within just a few weeks of completing the upgrade of Jaguar, we have several applications that are scaling to use the full performance of the system. Three of this year’s Gordon Bell award finalists are running on Jaguar using the full scope of the machine. We also have many of our key applications in areas such as materials science, computational chemistry, fusion energy, superconductivity, and bioenergy using all of Jaguar today. We expect that as the remainder of our users get access to the upgraded system, we will see most of our applications taking full advantage of the size of the system.

HPCwire: What other types of applications are slated to get time on Jaguar?

Bland: The DOE INCITE program allocates time on the leadership systems: Jaguar at ORNL and Intrepid at ANL. A small number of scientifically important, time critical applications from government laboratories, academia and industry are awarded large blocks of time. In 2009, 38 projects received allocations of time on Jaguar as part of the INCITE program.

Jaguar is supporting some of the most important projects of our time such as:

  • understanding the causes, impacts, and mitigations of climate change.
  • energy storage such as new batteries and capacitors, which are needed to make technologies like solar cells and wind power more useful.
  • fusion energy which will harness the power that fuels the sun to generate clean, carbon-free power.
  • bioenergy projects that are understanding how to convert waste cellulose products such a switch grass into renewable biofuels.
  • nuclear power projects that are designing new types of reactors that are safer and do not pose the threats of nuclear proliferation.

HPCwire: Is there an upgrade path for Jaguar beyond its current configuration?

Bland: The socket replaceable line of processors from AMD and the board compatible line of systems from Cray have been a key part of the success of Jaguar. We have been able to upgrade cabinets from single-core to dual-core to quad-core and now to 6-core processors while preserving much of our investment. This allowed ORNL and Cray to upgrade Jaguar, stepping up from 26 teraflops to 54 TF, 119 TF, 263 TF, and now 2.3 petaflops. Without this series of increasingly powerful systems, we would not have been able to continuously move the users and their applications to higher and higher performance, resulting in the scientific success we have seen from the system. Cray’s line of systems may yet provide another upgrade path for Jaguar.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire