Reconfigurable Computing Research Pushes Forward

By Nicole Hemsoth

November 20, 2009

Despite all the all the recent hoopla about GPGPUs and eight-core CPUs, proponents of reconfigurable computing continue to sing the praises of FPGA-based HPC. The main advantage of reconfigurable computing, or RC for short, is that programmers are able to change the circuitry of the chip on the fly. Thus, in theory, the hardware can be matched to the software, rather than the other way around. While there are a handful of commercial offerings from companies such as Convey Computer, XtremeData, GiDel, Mitrionics, and Impulse Accelerated Technologies, RC is still an area of active research.

In the U.S., the NSF Center for High-Performance Reconfigurable Computing (CHREC, pronounced “shreck”), acts as the research hub for RC, bringing together more than 30 organizations in this field. CHREC is run by Dr. Alan George, who gave an address at the SC09 Workshop on High-Performance Reconfigurable Computing Technology and Applications (HPRCTA’09) on November 15. We got the opportunity to ask Dr. George about the work going on at the Center and what he thinks RC technology can offer to high performance computing users.

HPCwire: FPGA-based reconfigurable computing has captured some loyal followers in the HPC community. What are the advantages of FPGAs for high-performance computing compared to fixed-logic architectures such as CPUs, GPUs, the Cell processor?

Alan George: HPC is approaching a crossroads in terms of enabling technologies and their inherent strengths and weaknesses. Goals and challenges in three principal areas are vitally important yet increasingly in conflict: performance, productivity, and sustainability. For example, HPC machines lauded in the upper tier of the TOP500 list as most powerful in the world are remarkably high in performance yet also remarkably massive in size, energy, heat, and cost, all featuring programmable, fixed-logic devices, for example, CPU, GPU, Cell. Meanwhile, throughout society, energy cost, source, and availability are a growing concern. As life-cycle costs of energy and cooling rise to approach and exceed that of software and hardware in total cost of ownership, these technologies may become unsustainable.

By contrast, numerous research studies show that computing with reconfigurable-logic devices — FPGAs, et al. — is fundamentally superior in terms of speed and energy, due to the many advantages of adaptive, customizable hardware parallelism. Common sense confirms this comparison. Programmable fixed-logic devices no matter their form feature a “one size fits all” or “Jack of all trades” philosophy, with a predefined structure of parallelism, yet attempting to support all applications or some major subset. In contrast, the structure of parallelism in reconfigurable-logic devices can be customized, that is, reconfigured, for each application or task on the fly, being versatile yet optimized specifically for each problem at hand. With this perspective, fixed-logic computing and accelerators are following a more evolutionary path, whereas RC is relatively new and revolutionary.

It should be noted that RC, as a new paradigm of computing, is broader than FPGA acceleration for HPC. FPGA devices are the leading commercial technology available today that is capable of RC, albeit not originally designed for RC, and thus FPGAs are the focal point for virtually all experimental research and commercial deployments, with a growing list of success stories. However, looking ahead more broadly, reconfigurable logic may be featured in future devices with a variety of structures, granularities, functionalities, etc., perhaps very similar to today’s FPGAs or perhaps quite different.

HPCwire: What role, or roles, do you see for RC technology in high performance computing and high performance embedded computing? Will RC be a niche solution in specific application areas or do you see this technology being used in general-purpose platforms that will be widely deployed?

George: Naturally, as a relatively new paradigm of computing, RC has started with emphasis in a few targeted areas, for example, aerospace and bioinformatics, where missions and users require dramatic improvement only possible by a revolutionary approach. As principal challenges — performance, productivity, and sustainability — become more pronounced, and as R&D in RC progresses, we believe that the RC paradigm will mature and expand in its role and influence to eventually become dominant in a broad range of applications, from satellites to servers to supercomputers. We are already witnessing this trend in several sectors of high-performance embedded computing. For example, in advanced computing on space missions, high performance and versatility are critical with limited energy, size, and weight. NASA, DOD, and other space-related agencies worldwide are increasingly featuring RC technologies in their platforms, as is the aerospace community in general. The driving issues in this community — again performance, productivity, and especially sustainability — are becoming increasingly important in HPC.

HPCwire: In the past couple of years, non-RC accelerators like the Cell processor and now, especially, general-purpose GPUs have been making big news in the HPC world, with major deployments planned. What has held back reconfigurable computing technology in this application space?

George: There are several reasons why Cell and GPU accelerators are more popular in HPC at present. Perhaps most obviously, they are viewed as inexpensive, due to leveraging of the gaming market. Vendors have invested heavily, both marketing and R&D, to broaden the appeal of these devices for the HPC community. Moreover, in terms of fundamental computing principles, they are an evolutionary development in device architecture, and as such represent less risk. However, we believe that inherent weaknesses of any fixed-logic device technology … in terms of broad applicability at speed and energy efficiency, will eventually become limiting factors.

By contrast, reconfigurable computing is a relatively new and immature paradigm of computing. Like any new paradigm, there are R&D challenges that must be solved before it can become more broadly applicable and eventually ubiquitous. With fixed-logic computing, the user and application have no control over underlying hardware parallelism; they simply attempt to exploit as much as the manufacturer has deemed to provide. With reconfigurable-logic computing, the user and application define the hardware parallelism, featuring wide and deep parallelism as appropriate, with selectable precision, optimized data paths, etc., up to the limits of total device capacity. This tremendous advantage in parallel computing potency comes with the challenge of complexity. Thus, as is natural for any new paradigm and set of technologies, design productivity is an important challenge at present for RC in general and FPGA devices in particular, so that HPC users, and others, can take full advantage without having to be trained as electrical engineers.

It should be noted that this life-cycle is commonplace in the history of technology. An established technology is dominant for many years; it experiences growth over a long period of time from evolutionary advances, and one day it is partially or wholly supplanted by a new, revolutionary technology, but only after that new technology has navigated a long and winding road of research and development. Productivity is often a key challenge for a new IT technology, learning how to effectively harness and exploit the inherent advantages of the new approach.

HPCwire: What do you see on the horizon that could propel reconfigurable computing into a more mainstream role?

George: There are two major factors on the horizon that we believe will dramatically change the landscape. One factor is the trend for performance, productivity, and sustainability borne by growing concerns with conventional technologies about speed versus energy consumption, which increasingly favors RC. The conventional model of computing with fixed-logic multicore devices is limiting in terms of performance per unit of energy as compared to reconfigurable-logic devices. However, RC is viewed by many as lagging in effective concepts and tools for application development by domain scientists and other users to harness this potency without special skills. Thus, the second factor is taming this new paradigm of computing and innovations in its technologies, so that it is amenable to a broader range of users. In this regard, many vendors and research groups are conducting R&D and developing new concepts, tools, and products to address this challenge. In the future, RC will become more important for a growing set of missions, applications, and users and, concomitantly, it will become more amenable to them, so that productivity is maximized alongside performance and sustainability.

HPCwire: The new Novo-G reconfigurable computing system at the NSF Center for High-Performance Reconfigurable Computing (CHREC) has been up and running for just a few months. Can you tell us about the machine and what you hope to accomplish with it?

George: Novo-G became operational in July of this year and is believed to be the most powerful RC machine ever fielded for research. Its size, cooling and power consumption are modest by HPC standards, but they hide its computational superiority. For example, in our first application experiment working with domain scientists in computational biology, performance was sustained with 96 FPGAs that matched that of the largest machines on the NSF TeraGrid, yet provided by a machine that is hundreds of times lower in cost, power, cooling, size, etc.

Housed in three racks, Novo-G consists of 24 standard Linux servers, plus a head node, connected by DDR InfiniBand and GigE. Each server features a tightly-coupled set of four FPGA accelerators on a ProcStar-III PCIe board from GiDEL supported by a conventional multicore CPU, motherboard, disk, etc. Each FPGA is a Stratix-III E260 device from Altera with 254K logic elements, 768 18×18 multipliers, and more than 4GB of DDR2 memory directly attached via three banks. Altogether, Novo-G features 96 of these FPGAs, with an upgrade underway that by January will double its RC capacity to 192 FPGAs via two coupled RC boards per server.

The purpose of Novo-G is to support a variety of research projects in CHREC related to RC performance, productivity and sustainability. Founded in 2007, CHREC is a national research center under the auspices of the I/UCRC program of the National Science Foundation and consists of more than 30 academic, industry and government partners working collaboratively on research in this field. In addition, several new collaborations have been inspired by Novo-G, with other research groups, for example, Boston University and the Air Force Research Laboratory, as well as tools vendors such as Impulse Accelerated Technologies and Mitrionics.

HPCwire: Can you talk about a few of the projects at CHREC that look especially promising?

George: On-going research projects at the four university sites of CHREC — the University of Florida, Brigham Young University led by Dr. Brent Nelson, George Washington University led by Dr. Tarek El-Ghazawi, and Virginia Tech led by Dr. Peter Athanas — fall into four categories: productivity, architecture, partial reconfiguration, and fault tolerance. In the area of productivity, several projects are underway, crafting novel concepts for design of RC applications and systems, including new methods and tools for design formulation and prediction, hardware virtualization, module and core reuse, design verification and optimization, and programming with high-level languages. With respect to architecture, researchers are working to characterize and optimize new and emerging devices — both fixed and reconfigurable logic — and systems, as well as methods to promote autonomous hardware reconfiguration. Both of these project areas of productivity and architecture relate well to HPC.

Meanwhile, one of the unique features of some RC devices is their ability to reconfigure portions of the hardware of the chip while other portions remain unchanged and thus operational, and this powerful feature involves many research and design challenges being studied and addressed by several teams. Last but not least, as process densities increase and become more susceptible to faults, environments become harsher, and resources become more prone to soft or hard errors, research challenges arise in fault tolerance. In this area, CHREC researchers are developing device- and system-level RC concepts and architectures to support scenarios that require high performance, versatility, and reliability with low power, cooling, and size, be it for outer space or the HPC computer room.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This