Reconfigurable Computing Research Pushes Forward

By Nicole Hemsoth

November 20, 2009

Despite all the all the recent hoopla about GPGPUs and eight-core CPUs, proponents of reconfigurable computing continue to sing the praises of FPGA-based HPC. The main advantage of reconfigurable computing, or RC for short, is that programmers are able to change the circuitry of the chip on the fly. Thus, in theory, the hardware can be matched to the software, rather than the other way around. While there are a handful of commercial offerings from companies such as Convey Computer, XtremeData, GiDel, Mitrionics, and Impulse Accelerated Technologies, RC is still an area of active research.

In the U.S., the NSF Center for High-Performance Reconfigurable Computing (CHREC, pronounced “shreck”), acts as the research hub for RC, bringing together more than 30 organizations in this field. CHREC is run by Dr. Alan George, who gave an address at the SC09 Workshop on High-Performance Reconfigurable Computing Technology and Applications (HPRCTA’09) on November 15. We got the opportunity to ask Dr. George about the work going on at the Center and what he thinks RC technology can offer to high performance computing users.

HPCwire: FPGA-based reconfigurable computing has captured some loyal followers in the HPC community. What are the advantages of FPGAs for high-performance computing compared to fixed-logic architectures such as CPUs, GPUs, the Cell processor?

Alan George: HPC is approaching a crossroads in terms of enabling technologies and their inherent strengths and weaknesses. Goals and challenges in three principal areas are vitally important yet increasingly in conflict: performance, productivity, and sustainability. For example, HPC machines lauded in the upper tier of the TOP500 list as most powerful in the world are remarkably high in performance yet also remarkably massive in size, energy, heat, and cost, all featuring programmable, fixed-logic devices, for example, CPU, GPU, Cell. Meanwhile, throughout society, energy cost, source, and availability are a growing concern. As life-cycle costs of energy and cooling rise to approach and exceed that of software and hardware in total cost of ownership, these technologies may become unsustainable.

By contrast, numerous research studies show that computing with reconfigurable-logic devices — FPGAs, et al. — is fundamentally superior in terms of speed and energy, due to the many advantages of adaptive, customizable hardware parallelism. Common sense confirms this comparison. Programmable fixed-logic devices no matter their form feature a “one size fits all” or “Jack of all trades” philosophy, with a predefined structure of parallelism, yet attempting to support all applications or some major subset. In contrast, the structure of parallelism in reconfigurable-logic devices can be customized, that is, reconfigured, for each application or task on the fly, being versatile yet optimized specifically for each problem at hand. With this perspective, fixed-logic computing and accelerators are following a more evolutionary path, whereas RC is relatively new and revolutionary.

It should be noted that RC, as a new paradigm of computing, is broader than FPGA acceleration for HPC. FPGA devices are the leading commercial technology available today that is capable of RC, albeit not originally designed for RC, and thus FPGAs are the focal point for virtually all experimental research and commercial deployments, with a growing list of success stories. However, looking ahead more broadly, reconfigurable logic may be featured in future devices with a variety of structures, granularities, functionalities, etc., perhaps very similar to today’s FPGAs or perhaps quite different.

HPCwire: What role, or roles, do you see for RC technology in high performance computing and high performance embedded computing? Will RC be a niche solution in specific application areas or do you see this technology being used in general-purpose platforms that will be widely deployed?

George: Naturally, as a relatively new paradigm of computing, RC has started with emphasis in a few targeted areas, for example, aerospace and bioinformatics, where missions and users require dramatic improvement only possible by a revolutionary approach. As principal challenges — performance, productivity, and sustainability — become more pronounced, and as R&D in RC progresses, we believe that the RC paradigm will mature and expand in its role and influence to eventually become dominant in a broad range of applications, from satellites to servers to supercomputers. We are already witnessing this trend in several sectors of high-performance embedded computing. For example, in advanced computing on space missions, high performance and versatility are critical with limited energy, size, and weight. NASA, DOD, and other space-related agencies worldwide are increasingly featuring RC technologies in their platforms, as is the aerospace community in general. The driving issues in this community — again performance, productivity, and especially sustainability — are becoming increasingly important in HPC.

HPCwire: In the past couple of years, non-RC accelerators like the Cell processor and now, especially, general-purpose GPUs have been making big news in the HPC world, with major deployments planned. What has held back reconfigurable computing technology in this application space?

George: There are several reasons why Cell and GPU accelerators are more popular in HPC at present. Perhaps most obviously, they are viewed as inexpensive, due to leveraging of the gaming market. Vendors have invested heavily, both marketing and R&D, to broaden the appeal of these devices for the HPC community. Moreover, in terms of fundamental computing principles, they are an evolutionary development in device architecture, and as such represent less risk. However, we believe that inherent weaknesses of any fixed-logic device technology … in terms of broad applicability at speed and energy efficiency, will eventually become limiting factors.

By contrast, reconfigurable computing is a relatively new and immature paradigm of computing. Like any new paradigm, there are R&D challenges that must be solved before it can become more broadly applicable and eventually ubiquitous. With fixed-logic computing, the user and application have no control over underlying hardware parallelism; they simply attempt to exploit as much as the manufacturer has deemed to provide. With reconfigurable-logic computing, the user and application define the hardware parallelism, featuring wide and deep parallelism as appropriate, with selectable precision, optimized data paths, etc., up to the limits of total device capacity. This tremendous advantage in parallel computing potency comes with the challenge of complexity. Thus, as is natural for any new paradigm and set of technologies, design productivity is an important challenge at present for RC in general and FPGA devices in particular, so that HPC users, and others, can take full advantage without having to be trained as electrical engineers.

It should be noted that this life-cycle is commonplace in the history of technology. An established technology is dominant for many years; it experiences growth over a long period of time from evolutionary advances, and one day it is partially or wholly supplanted by a new, revolutionary technology, but only after that new technology has navigated a long and winding road of research and development. Productivity is often a key challenge for a new IT technology, learning how to effectively harness and exploit the inherent advantages of the new approach.

HPCwire: What do you see on the horizon that could propel reconfigurable computing into a more mainstream role?

George: There are two major factors on the horizon that we believe will dramatically change the landscape. One factor is the trend for performance, productivity, and sustainability borne by growing concerns with conventional technologies about speed versus energy consumption, which increasingly favors RC. The conventional model of computing with fixed-logic multicore devices is limiting in terms of performance per unit of energy as compared to reconfigurable-logic devices. However, RC is viewed by many as lagging in effective concepts and tools for application development by domain scientists and other users to harness this potency without special skills. Thus, the second factor is taming this new paradigm of computing and innovations in its technologies, so that it is amenable to a broader range of users. In this regard, many vendors and research groups are conducting R&D and developing new concepts, tools, and products to address this challenge. In the future, RC will become more important for a growing set of missions, applications, and users and, concomitantly, it will become more amenable to them, so that productivity is maximized alongside performance and sustainability.

HPCwire: The new Novo-G reconfigurable computing system at the NSF Center for High-Performance Reconfigurable Computing (CHREC) has been up and running for just a few months. Can you tell us about the machine and what you hope to accomplish with it?

George: Novo-G became operational in July of this year and is believed to be the most powerful RC machine ever fielded for research. Its size, cooling and power consumption are modest by HPC standards, but they hide its computational superiority. For example, in our first application experiment working with domain scientists in computational biology, performance was sustained with 96 FPGAs that matched that of the largest machines on the NSF TeraGrid, yet provided by a machine that is hundreds of times lower in cost, power, cooling, size, etc.

Housed in three racks, Novo-G consists of 24 standard Linux servers, plus a head node, connected by DDR InfiniBand and GigE. Each server features a tightly-coupled set of four FPGA accelerators on a ProcStar-III PCIe board from GiDEL supported by a conventional multicore CPU, motherboard, disk, etc. Each FPGA is a Stratix-III E260 device from Altera with 254K logic elements, 768 18×18 multipliers, and more than 4GB of DDR2 memory directly attached via three banks. Altogether, Novo-G features 96 of these FPGAs, with an upgrade underway that by January will double its RC capacity to 192 FPGAs via two coupled RC boards per server.

The purpose of Novo-G is to support a variety of research projects in CHREC related to RC performance, productivity and sustainability. Founded in 2007, CHREC is a national research center under the auspices of the I/UCRC program of the National Science Foundation and consists of more than 30 academic, industry and government partners working collaboratively on research in this field. In addition, several new collaborations have been inspired by Novo-G, with other research groups, for example, Boston University and the Air Force Research Laboratory, as well as tools vendors such as Impulse Accelerated Technologies and Mitrionics.

HPCwire: Can you talk about a few of the projects at CHREC that look especially promising?

George: On-going research projects at the four university sites of CHREC — the University of Florida, Brigham Young University led by Dr. Brent Nelson, George Washington University led by Dr. Tarek El-Ghazawi, and Virginia Tech led by Dr. Peter Athanas — fall into four categories: productivity, architecture, partial reconfiguration, and fault tolerance. In the area of productivity, several projects are underway, crafting novel concepts for design of RC applications and systems, including new methods and tools for design formulation and prediction, hardware virtualization, module and core reuse, design verification and optimization, and programming with high-level languages. With respect to architecture, researchers are working to characterize and optimize new and emerging devices — both fixed and reconfigurable logic — and systems, as well as methods to promote autonomous hardware reconfiguration. Both of these project areas of productivity and architecture relate well to HPC.

Meanwhile, one of the unique features of some RC devices is their ability to reconfigure portions of the hardware of the chip while other portions remain unchanged and thus operational, and this powerful feature involves many research and design challenges being studied and addressed by several teams. Last but not least, as process densities increase and become more susceptible to faults, environments become harsher, and resources become more prone to soft or hard errors, research challenges arise in fault tolerance. In this area, CHREC researchers are developing device- and system-level RC concepts and architectures to support scenarios that require high performance, versatility, and reliability with low power, cooling, and size, be it for outer space or the HPC computer room.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This