Reconfigurable Computing Research Pushes Forward

By Nicole Hemsoth

November 20, 2009

Despite all the all the recent hoopla about GPGPUs and eight-core CPUs, proponents of reconfigurable computing continue to sing the praises of FPGA-based HPC. The main advantage of reconfigurable computing, or RC for short, is that programmers are able to change the circuitry of the chip on the fly. Thus, in theory, the hardware can be matched to the software, rather than the other way around. While there are a handful of commercial offerings from companies such as Convey Computer, XtremeData, GiDel, Mitrionics, and Impulse Accelerated Technologies, RC is still an area of active research.

In the U.S., the NSF Center for High-Performance Reconfigurable Computing (CHREC, pronounced “shreck”), acts as the research hub for RC, bringing together more than 30 organizations in this field. CHREC is run by Dr. Alan George, who gave an address at the SC09 Workshop on High-Performance Reconfigurable Computing Technology and Applications (HPRCTA’09) on November 15. We got the opportunity to ask Dr. George about the work going on at the Center and what he thinks RC technology can offer to high performance computing users.

HPCwire: FPGA-based reconfigurable computing has captured some loyal followers in the HPC community. What are the advantages of FPGAs for high-performance computing compared to fixed-logic architectures such as CPUs, GPUs, the Cell processor?

Alan George: HPC is approaching a crossroads in terms of enabling technologies and their inherent strengths and weaknesses. Goals and challenges in three principal areas are vitally important yet increasingly in conflict: performance, productivity, and sustainability. For example, HPC machines lauded in the upper tier of the TOP500 list as most powerful in the world are remarkably high in performance yet also remarkably massive in size, energy, heat, and cost, all featuring programmable, fixed-logic devices, for example, CPU, GPU, Cell. Meanwhile, throughout society, energy cost, source, and availability are a growing concern. As life-cycle costs of energy and cooling rise to approach and exceed that of software and hardware in total cost of ownership, these technologies may become unsustainable.

By contrast, numerous research studies show that computing with reconfigurable-logic devices — FPGAs, et al. — is fundamentally superior in terms of speed and energy, due to the many advantages of adaptive, customizable hardware parallelism. Common sense confirms this comparison. Programmable fixed-logic devices no matter their form feature a “one size fits all” or “Jack of all trades” philosophy, with a predefined structure of parallelism, yet attempting to support all applications or some major subset. In contrast, the structure of parallelism in reconfigurable-logic devices can be customized, that is, reconfigured, for each application or task on the fly, being versatile yet optimized specifically for each problem at hand. With this perspective, fixed-logic computing and accelerators are following a more evolutionary path, whereas RC is relatively new and revolutionary.

It should be noted that RC, as a new paradigm of computing, is broader than FPGA acceleration for HPC. FPGA devices are the leading commercial technology available today that is capable of RC, albeit not originally designed for RC, and thus FPGAs are the focal point for virtually all experimental research and commercial deployments, with a growing list of success stories. However, looking ahead more broadly, reconfigurable logic may be featured in future devices with a variety of structures, granularities, functionalities, etc., perhaps very similar to today’s FPGAs or perhaps quite different.

HPCwire: What role, or roles, do you see for RC technology in high performance computing and high performance embedded computing? Will RC be a niche solution in specific application areas or do you see this technology being used in general-purpose platforms that will be widely deployed?

George: Naturally, as a relatively new paradigm of computing, RC has started with emphasis in a few targeted areas, for example, aerospace and bioinformatics, where missions and users require dramatic improvement only possible by a revolutionary approach. As principal challenges — performance, productivity, and sustainability — become more pronounced, and as R&D in RC progresses, we believe that the RC paradigm will mature and expand in its role and influence to eventually become dominant in a broad range of applications, from satellites to servers to supercomputers. We are already witnessing this trend in several sectors of high-performance embedded computing. For example, in advanced computing on space missions, high performance and versatility are critical with limited energy, size, and weight. NASA, DOD, and other space-related agencies worldwide are increasingly featuring RC technologies in their platforms, as is the aerospace community in general. The driving issues in this community — again performance, productivity, and especially sustainability — are becoming increasingly important in HPC.

HPCwire: In the past couple of years, non-RC accelerators like the Cell processor and now, especially, general-purpose GPUs have been making big news in the HPC world, with major deployments planned. What has held back reconfigurable computing technology in this application space?

George: There are several reasons why Cell and GPU accelerators are more popular in HPC at present. Perhaps most obviously, they are viewed as inexpensive, due to leveraging of the gaming market. Vendors have invested heavily, both marketing and R&D, to broaden the appeal of these devices for the HPC community. Moreover, in terms of fundamental computing principles, they are an evolutionary development in device architecture, and as such represent less risk. However, we believe that inherent weaknesses of any fixed-logic device technology … in terms of broad applicability at speed and energy efficiency, will eventually become limiting factors.

By contrast, reconfigurable computing is a relatively new and immature paradigm of computing. Like any new paradigm, there are R&D challenges that must be solved before it can become more broadly applicable and eventually ubiquitous. With fixed-logic computing, the user and application have no control over underlying hardware parallelism; they simply attempt to exploit as much as the manufacturer has deemed to provide. With reconfigurable-logic computing, the user and application define the hardware parallelism, featuring wide and deep parallelism as appropriate, with selectable precision, optimized data paths, etc., up to the limits of total device capacity. This tremendous advantage in parallel computing potency comes with the challenge of complexity. Thus, as is natural for any new paradigm and set of technologies, design productivity is an important challenge at present for RC in general and FPGA devices in particular, so that HPC users, and others, can take full advantage without having to be trained as electrical engineers.

It should be noted that this life-cycle is commonplace in the history of technology. An established technology is dominant for many years; it experiences growth over a long period of time from evolutionary advances, and one day it is partially or wholly supplanted by a new, revolutionary technology, but only after that new technology has navigated a long and winding road of research and development. Productivity is often a key challenge for a new IT technology, learning how to effectively harness and exploit the inherent advantages of the new approach.

HPCwire: What do you see on the horizon that could propel reconfigurable computing into a more mainstream role?

George: There are two major factors on the horizon that we believe will dramatically change the landscape. One factor is the trend for performance, productivity, and sustainability borne by growing concerns with conventional technologies about speed versus energy consumption, which increasingly favors RC. The conventional model of computing with fixed-logic multicore devices is limiting in terms of performance per unit of energy as compared to reconfigurable-logic devices. However, RC is viewed by many as lagging in effective concepts and tools for application development by domain scientists and other users to harness this potency without special skills. Thus, the second factor is taming this new paradigm of computing and innovations in its technologies, so that it is amenable to a broader range of users. In this regard, many vendors and research groups are conducting R&D and developing new concepts, tools, and products to address this challenge. In the future, RC will become more important for a growing set of missions, applications, and users and, concomitantly, it will become more amenable to them, so that productivity is maximized alongside performance and sustainability.

HPCwire: The new Novo-G reconfigurable computing system at the NSF Center for High-Performance Reconfigurable Computing (CHREC) has been up and running for just a few months. Can you tell us about the machine and what you hope to accomplish with it?

George: Novo-G became operational in July of this year and is believed to be the most powerful RC machine ever fielded for research. Its size, cooling and power consumption are modest by HPC standards, but they hide its computational superiority. For example, in our first application experiment working with domain scientists in computational biology, performance was sustained with 96 FPGAs that matched that of the largest machines on the NSF TeraGrid, yet provided by a machine that is hundreds of times lower in cost, power, cooling, size, etc.

Housed in three racks, Novo-G consists of 24 standard Linux servers, plus a head node, connected by DDR InfiniBand and GigE. Each server features a tightly-coupled set of four FPGA accelerators on a ProcStar-III PCIe board from GiDEL supported by a conventional multicore CPU, motherboard, disk, etc. Each FPGA is a Stratix-III E260 device from Altera with 254K logic elements, 768 18×18 multipliers, and more than 4GB of DDR2 memory directly attached via three banks. Altogether, Novo-G features 96 of these FPGAs, with an upgrade underway that by January will double its RC capacity to 192 FPGAs via two coupled RC boards per server.

The purpose of Novo-G is to support a variety of research projects in CHREC related to RC performance, productivity and sustainability. Founded in 2007, CHREC is a national research center under the auspices of the I/UCRC program of the National Science Foundation and consists of more than 30 academic, industry and government partners working collaboratively on research in this field. In addition, several new collaborations have been inspired by Novo-G, with other research groups, for example, Boston University and the Air Force Research Laboratory, as well as tools vendors such as Impulse Accelerated Technologies and Mitrionics.

HPCwire: Can you talk about a few of the projects at CHREC that look especially promising?

George: On-going research projects at the four university sites of CHREC — the University of Florida, Brigham Young University led by Dr. Brent Nelson, George Washington University led by Dr. Tarek El-Ghazawi, and Virginia Tech led by Dr. Peter Athanas — fall into four categories: productivity, architecture, partial reconfiguration, and fault tolerance. In the area of productivity, several projects are underway, crafting novel concepts for design of RC applications and systems, including new methods and tools for design formulation and prediction, hardware virtualization, module and core reuse, design verification and optimization, and programming with high-level languages. With respect to architecture, researchers are working to characterize and optimize new and emerging devices — both fixed and reconfigurable logic — and systems, as well as methods to promote autonomous hardware reconfiguration. Both of these project areas of productivity and architecture relate well to HPC.

Meanwhile, one of the unique features of some RC devices is their ability to reconfigure portions of the hardware of the chip while other portions remain unchanged and thus operational, and this powerful feature involves many research and design challenges being studied and addressed by several teams. Last but not least, as process densities increase and become more susceptible to faults, environments become harsher, and resources become more prone to soft or hard errors, research challenges arise in fault tolerance. In this area, CHREC researchers are developing device- and system-level RC concepts and architectures to support scenarios that require high performance, versatility, and reliability with low power, cooling, and size, be it for outer space or the HPC computer room.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire