Ubiquitous Parallelism and the Classroom

By Tom Murphy of Contra Costa College, Paul Gray of the University of Northern Iowa, Charlie Peck of Earlham College, and Dave Joiner of Kean University

November 20, 2009

The oft-contended best simple statement is that we need ubiquitous parallelism in the classroom. Once upon a time, it was solely the lunatic fringe, programming esoteric architectures squirreled away in very special corners of the globe that cared about parallelism. In the near future, most electronic devices will have multiple cores which would benefit greatly from parallel programming. The low hanging fruit is, of course, the student’s laptop, and aiding the student to make full use of that laptop.

So how do we get there?

Our perception of next steps comes from close to a decade of collaboration pushing parallel and distributed computing education. This doesn’t mean we are right, just that we have been walking the walk. Three of the four of us are computer scientists and Dave, our physicist, is essentially also one (of course he claims that we’re all physicists). The bulk of our time together, outside of our respective day jobs teaching, is spent leading week-long workshops for faculty – largely focused on the teaching of parallel and distributed programming and computational thinking. Our assertion is this: As computer architectures evolve from single core to multicore to manycore, the computer science curriculum must experience a commensurate single-course to multi-course to many-course evolution in terms of where parallelism is studied.

Thus, you’re probably not surprised we’re saying faculty education is the key way to get from here to there, using as many modes of conveyance as possible. For teaching parallelism in our courses, few of us CS educators have learned what we have needed from our own formal education. We possess a self-taught science/art crafted via the hands-on hard-knock cycles of design, debugging, and despair which provided us with rich learning opportunities. This highlights the goals we have for our students: theory tightly coupled with the pragmatic skills of the practiced practitioner, learned via the cycles of design, debugging, and despair. Note that performance programming is wonderfully resurfacing in importance, for if you don’t need performance, why bother with the complexity of a parallel solution? Just run on your friendly neighborhood SMP or NUMA architecture, which will suffice as a first order solution for many problems. It was performance parallel programming that put the ‘L’ in lunatic fringe, and to raise ‘L’, we will ultimately need to examine the isolated graduate and undergraduate courses and weave the key components of parallelism into the fabric of all computer science courses beginning at the earliest level.

So let’s get specific on possibilities for the first courses at the undergraduate level. The core of CS1 typically starts with the nomenclature, theory, and components of a simple algorithm and a basic block of execution. Flow of control is our next extension: branches, loops, and functions. Parallelism is easily a natural next layer. When we invoke parallelism, we might demonstrate by conjuring with threads and shared memory, since the use of shared memory will not perturb the student’s simple notion of array-like memory. Additionally, the most frequently used shared memory mechanism, OpenMP, allows a gradual move from pure von-Neumann towards “pure” shared memory parallelism. This will cover fine-grain parallelism. A hunger for a different course of studies leads to the course-grained approach of distributed memory parallelism with MPI. Larger scale parallelism is naturally necessarily discovered by students as the problems of interest continue to grow.

The legal battlefield of Amdahl and Gustafson is a good next stop, guiding us into the study of data structures and algorithms via a perilous path littered with algorithms which scale poorly. Unchecked and unplanned parallelism will lead us to throttled resources whether Von Neumann’s bottleneck or the more insidious communication costs incurred when trying to tame a parallel algorithm. Students can learn of dwarvish parallel patterns and associated phenomena such as a sequentially elegant quicksort quickly foundering in the presence of unamortized distributed memory costs.

This is a good time to consider how to squeeze weeks and weeks of new material on parallelism into a semester. Something has to give and something will give, but this is not a new dilemma. It is something we each faced when first crafting what we will cover in a course. It is something we face to a greater or lesser extent every time we re-teach a course given the pace of change in our discipline.

Now it is time for an anecdote. Tom interviewed Dave Paterson as part of the “Teach Parallel” series of interviews. The interview ranged over many topics, one of which was Dave’s fourth edition of “Computer Organization and Design”, which gloriously has parallel topics woven into each chapter. This led to talking with Dave’s publisher about targeting an adaptation of the book towards community colleges, such as Contra Costa College where Tom teaches. The publisher was surprised to learn no dilution of the 703 pages was desired. Tom plans to cherry pick the material to use in his Computer Architecture course, which is a continuation of an experiment he’s been running in all his courses, which allows the entire book is covered, just at varying depths. It is important for Tom to convey how to be a good student, part of which is being able to self-learn from practitioners’ resources. This raises a good point: more textbook support for parallelism is going to make this whole process a heck of a lot easier. Unfortunately, it takes awhile to prime the curricular pump.

Computer architecture has traditionally incorporated elements of parallelism and concurrency; via semaphores and atomic operations, pipelines and multiple functional units, SMP architectures, and instruction and data paths. It has always been the place where the key hardware issues of the current architectures inform the software designed to run on it.

There are no easy answers, but there really are clear steps. We need to help students get to a place where they think of a single processing unit as just a special case of multiple processing units, much like they now learn to view a single variable as a special case of an array.

About the Authors

Thomas Murphy is a professor of Computer Science at Contra Costa College (CCC). He is chair of the CCC Computer Science program and is director of the CCC High Performance Computing Center, which has supported both the Linux cluster administration program and the computational science education program. Thomas has worked with the National Computational Science Institute (NCSI) since 2002. He is one of four members of the NCSI Parallel and Distributed Working group, which presents several three to seven day workshops each year, and helps develop the Bootable Cluster CD software platform, the LittleFe hardware platform, and the CSERD (Computational Science Education Reference Desk) curricular platform.

Paul Gray is an Associate Professor of Computer Science at the University of Northern Iowa. He created the Bootable Cluster CD project (http://bccd.net/) and provides instructional support for the National Computational Sciences Institute summer workshops on Cluster and Parallel Computing. He was SC08 Education Program Chair and serves on the executive committee for the SC07-11 Education Program.

Charlie Peck is the leader of the The Cluster Computing Group (CCG) at Earlham College, a student/faculty research group in the Computer Science department. The CCG is the primary design and engineering team for LittleFe, developers of computational science software, e.g., [email protected], and technical contributors to Paul Gray’s Bootable Cluster CD project. Additionally, Charlie is the primary developer on the LittleFe project.

Dave Joiner is an assistant professor of Computational Mathematics in the New Jersey Center for Science, Technology, and Mathematics Education. The NJCSTME focuses on the training of science and math teachers with an integrated view of modern math, science, and computing. Additionally, Dave has collaborated since 1999 with the efforts of the Shodor Education Foundation, Inc., and the National Computational Science Institute.  He currently serves as a Co-PI on the Computational Science Education Reference Desk, the Pathway of the National Science Digital Library devoted to computational science education.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Azure Benchmarks HC-series across 20,000 cores for HPC

June 25, 2019

Cloud provider Microsoft Azure’s push into HPC continues to gain momentum. In a blog last week, Evan Burness, principal program manager, Azure HPC, announced HC-series Virtual Machine are now available in West US 2 and Read more…

By John Russell

MLPerf Expands Toolset; Launches Inferencing Suite

June 24, 2019

MLPerf today launched a benchmark suite for inferencing, v0.5, which joins the MLPerf training suite launched a little over a year ago. The new inferencing benchmark, which has been anticipated, covers models applicable Read more…

By John Russell

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – and now, Tom Coughlin (on behalf of Supermicro) has provided a Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Avoid AI Redo’s by Starting with the Right Infrastructure

Do you know if you have the right infrastructure for AI? Many organizations don’t have it. In a recent IDC survey, “77.1% of respondents say they ran into one or more limitations with their AI infrastructure on-premise and 90.3% ran into compute limitations in the cloud.” Read more…

U.S. Blacklists Sugon, 4 Others from Access to Advanced Technology

June 21, 2019

Just as ISC19 wrapped up yesterday, showcasing the latest in supercomputing technology, the U.S. added five Chinese entities including Sugon to its blacklist prohibiting them from access to advanced technology vital to s Read more…

By John Russell

MLPerf Expands Toolset; Launches Inferencing Suite

June 24, 2019

MLPerf today launched a benchmark suite for inferencing, v0.5, which joins the MLPerf training suite launched a little over a year ago. The new inferencing benc Read more…

By John Russell

Is Weather and Climate Prediction the Perfect ‘Pilot’ for Exascale?

June 21, 2019

At ISC 2019 this week, Peter Bauer – deputy director of research for the European Centre for Medium-Range Weather Forecasts (ECMWF) – outlined an ambitious Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

IBM Claims No. 1 Commercial Supercomputer with Total Oil & Gas System 

June 20, 2019

IBM can now boast not only the two most powerful supercomputers in the world, it also has claimed the top spot for a supercomputer used in a commercial setting. Read more…

By Staff Report

HPC on Pace for 5-Year 6.8% CAGR; Guess Which Hyperscaler Spent $10B on IT Last Year?

June 20, 2019

In the neck-and-neck horse race for HPC server market share, HPE has hung on to a slim, shrinking lead over Dell EMC – but if server and storage market shares Read more…

By Doug Black

ISC 2019 Research Paper Award Winners Announced

June 19, 2019

At the 2019 International Supercomputing Conference (ISC) in Frankfurt this week, the ISC committee awarded the event's top prizes for outstanding research pape Read more…

By Oliver Peckham

ISC Keynote: The Algorithms of Life – Scientific Computing for Systems Biology

June 19, 2019

Systems biology has existed loosely under many definitions for a couple of decades. It’s the notion of describing living systems using first-principle physics Read more…

By John Russell

Summit Achieves 445 Petaflops on New ‘HPL-AI’ Benchmark

June 19, 2019

Summit -- the world's top-ranking supercomputer -- has been used to test-drive a new mixed-precision Linpack benchmark, which for now is being called HPL-AI. Traditionally, supercomputer performance is measured using the High-Performance Linpack (HPL) benchmark, which is the basis for the Top500 list that biannually ranks world's fastest supercomputers. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This