Ubiquitous Parallelism and the Classroom

By Tom Murphy of Contra Costa College, Paul Gray of the University of Northern Iowa, Charlie Peck of Earlham College, and Dave Joiner of Kean University

November 20, 2009

The oft-contended best simple statement is that we need ubiquitous parallelism in the classroom. Once upon a time, it was solely the lunatic fringe, programming esoteric architectures squirreled away in very special corners of the globe that cared about parallelism. In the near future, most electronic devices will have multiple cores which would benefit greatly from parallel programming. The low hanging fruit is, of course, the student’s laptop, and aiding the student to make full use of that laptop.

So how do we get there?

Our perception of next steps comes from close to a decade of collaboration pushing parallel and distributed computing education. This doesn’t mean we are right, just that we have been walking the walk. Three of the four of us are computer scientists and Dave, our physicist, is essentially also one (of course he claims that we’re all physicists). The bulk of our time together, outside of our respective day jobs teaching, is spent leading week-long workshops for faculty – largely focused on the teaching of parallel and distributed programming and computational thinking. Our assertion is this: As computer architectures evolve from single core to multicore to manycore, the computer science curriculum must experience a commensurate single-course to multi-course to many-course evolution in terms of where parallelism is studied.

Thus, you’re probably not surprised we’re saying faculty education is the key way to get from here to there, using as many modes of conveyance as possible. For teaching parallelism in our courses, few of us CS educators have learned what we have needed from our own formal education. We possess a self-taught science/art crafted via the hands-on hard-knock cycles of design, debugging, and despair which provided us with rich learning opportunities. This highlights the goals we have for our students: theory tightly coupled with the pragmatic skills of the practiced practitioner, learned via the cycles of design, debugging, and despair. Note that performance programming is wonderfully resurfacing in importance, for if you don’t need performance, why bother with the complexity of a parallel solution? Just run on your friendly neighborhood SMP or NUMA architecture, which will suffice as a first order solution for many problems. It was performance parallel programming that put the ‘L’ in lunatic fringe, and to raise ‘L’, we will ultimately need to examine the isolated graduate and undergraduate courses and weave the key components of parallelism into the fabric of all computer science courses beginning at the earliest level.

So let’s get specific on possibilities for the first courses at the undergraduate level. The core of CS1 typically starts with the nomenclature, theory, and components of a simple algorithm and a basic block of execution. Flow of control is our next extension: branches, loops, and functions. Parallelism is easily a natural next layer. When we invoke parallelism, we might demonstrate by conjuring with threads and shared memory, since the use of shared memory will not perturb the student’s simple notion of array-like memory. Additionally, the most frequently used shared memory mechanism, OpenMP, allows a gradual move from pure von-Neumann towards “pure” shared memory parallelism. This will cover fine-grain parallelism. A hunger for a different course of studies leads to the course-grained approach of distributed memory parallelism with MPI. Larger scale parallelism is naturally necessarily discovered by students as the problems of interest continue to grow.

The legal battlefield of Amdahl and Gustafson is a good next stop, guiding us into the study of data structures and algorithms via a perilous path littered with algorithms which scale poorly. Unchecked and unplanned parallelism will lead us to throttled resources whether Von Neumann’s bottleneck or the more insidious communication costs incurred when trying to tame a parallel algorithm. Students can learn of dwarvish parallel patterns and associated phenomena such as a sequentially elegant quicksort quickly foundering in the presence of unamortized distributed memory costs.

This is a good time to consider how to squeeze weeks and weeks of new material on parallelism into a semester. Something has to give and something will give, but this is not a new dilemma. It is something we each faced when first crafting what we will cover in a course. It is something we face to a greater or lesser extent every time we re-teach a course given the pace of change in our discipline.

Now it is time for an anecdote. Tom interviewed Dave Paterson as part of the “Teach Parallel” series of interviews. The interview ranged over many topics, one of which was Dave’s fourth edition of “Computer Organization and Design”, which gloriously has parallel topics woven into each chapter. This led to talking with Dave’s publisher about targeting an adaptation of the book towards community colleges, such as Contra Costa College where Tom teaches. The publisher was surprised to learn no dilution of the 703 pages was desired. Tom plans to cherry pick the material to use in his Computer Architecture course, which is a continuation of an experiment he’s been running in all his courses, which allows the entire book is covered, just at varying depths. It is important for Tom to convey how to be a good student, part of which is being able to self-learn from practitioners’ resources. This raises a good point: more textbook support for parallelism is going to make this whole process a heck of a lot easier. Unfortunately, it takes awhile to prime the curricular pump.

Computer architecture has traditionally incorporated elements of parallelism and concurrency; via semaphores and atomic operations, pipelines and multiple functional units, SMP architectures, and instruction and data paths. It has always been the place where the key hardware issues of the current architectures inform the software designed to run on it.

There are no easy answers, but there really are clear steps. We need to help students get to a place where they think of a single processing unit as just a special case of multiple processing units, much like they now learn to view a single variable as a special case of an array.

About the Authors

Thomas Murphy is a professor of Computer Science at Contra Costa College (CCC). He is chair of the CCC Computer Science program and is director of the CCC High Performance Computing Center, which has supported both the Linux cluster administration program and the computational science education program. Thomas has worked with the National Computational Science Institute (NCSI) since 2002. He is one of four members of the NCSI Parallel and Distributed Working group, which presents several three to seven day workshops each year, and helps develop the Bootable Cluster CD software platform, the LittleFe hardware platform, and the CSERD (Computational Science Education Reference Desk) curricular platform.

Paul Gray is an Associate Professor of Computer Science at the University of Northern Iowa. He created the Bootable Cluster CD project (http://bccd.net/) and provides instructional support for the National Computational Sciences Institute summer workshops on Cluster and Parallel Computing. He was SC08 Education Program Chair and serves on the executive committee for the SC07-11 Education Program.

Charlie Peck is the leader of the The Cluster Computing Group (CCG) at Earlham College, a student/faculty research group in the Computer Science department. The CCG is the primary design and engineering team for LittleFe, developers of computational science software, e.g., Folding@Clusters, and technical contributors to Paul Gray’s Bootable Cluster CD project. Additionally, Charlie is the primary developer on the LittleFe project.

Dave Joiner is an assistant professor of Computational Mathematics in the New Jersey Center for Science, Technology, and Mathematics Education. The NJCSTME focuses on the training of science and math teachers with an integrated view of modern math, science, and computing. Additionally, Dave has collaborated since 1999 with the efforts of the Shodor Education Foundation, Inc., and the National Computational Science Institute.  He currently serves as a Co-PI on the Computational Science Education Reference Desk, the Pathway of the National Science Digital Library devoted to computational science education.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This