Ubiquitous Parallelism and the Classroom

By Tom Murphy of Contra Costa College, Paul Gray of the University of Northern Iowa, Charlie Peck of Earlham College, and Dave Joiner of Kean University

November 20, 2009

The oft-contended best simple statement is that we need ubiquitous parallelism in the classroom. Once upon a time, it was solely the lunatic fringe, programming esoteric architectures squirreled away in very special corners of the globe that cared about parallelism. In the near future, most electronic devices will have multiple cores which would benefit greatly from parallel programming. The low hanging fruit is, of course, the student’s laptop, and aiding the student to make full use of that laptop.

So how do we get there?

Our perception of next steps comes from close to a decade of collaboration pushing parallel and distributed computing education. This doesn’t mean we are right, just that we have been walking the walk. Three of the four of us are computer scientists and Dave, our physicist, is essentially also one (of course he claims that we’re all physicists). The bulk of our time together, outside of our respective day jobs teaching, is spent leading week-long workshops for faculty – largely focused on the teaching of parallel and distributed programming and computational thinking. Our assertion is this: As computer architectures evolve from single core to multicore to manycore, the computer science curriculum must experience a commensurate single-course to multi-course to many-course evolution in terms of where parallelism is studied.

Thus, you’re probably not surprised we’re saying faculty education is the key way to get from here to there, using as many modes of conveyance as possible. For teaching parallelism in our courses, few of us CS educators have learned what we have needed from our own formal education. We possess a self-taught science/art crafted via the hands-on hard-knock cycles of design, debugging, and despair which provided us with rich learning opportunities. This highlights the goals we have for our students: theory tightly coupled with the pragmatic skills of the practiced practitioner, learned via the cycles of design, debugging, and despair. Note that performance programming is wonderfully resurfacing in importance, for if you don’t need performance, why bother with the complexity of a parallel solution? Just run on your friendly neighborhood SMP or NUMA architecture, which will suffice as a first order solution for many problems. It was performance parallel programming that put the ‘L’ in lunatic fringe, and to raise ‘L’, we will ultimately need to examine the isolated graduate and undergraduate courses and weave the key components of parallelism into the fabric of all computer science courses beginning at the earliest level.

So let’s get specific on possibilities for the first courses at the undergraduate level. The core of CS1 typically starts with the nomenclature, theory, and components of a simple algorithm and a basic block of execution. Flow of control is our next extension: branches, loops, and functions. Parallelism is easily a natural next layer. When we invoke parallelism, we might demonstrate by conjuring with threads and shared memory, since the use of shared memory will not perturb the student’s simple notion of array-like memory. Additionally, the most frequently used shared memory mechanism, OpenMP, allows a gradual move from pure von-Neumann towards “pure” shared memory parallelism. This will cover fine-grain parallelism. A hunger for a different course of studies leads to the course-grained approach of distributed memory parallelism with MPI. Larger scale parallelism is naturally necessarily discovered by students as the problems of interest continue to grow.

The legal battlefield of Amdahl and Gustafson is a good next stop, guiding us into the study of data structures and algorithms via a perilous path littered with algorithms which scale poorly. Unchecked and unplanned parallelism will lead us to throttled resources whether Von Neumann’s bottleneck or the more insidious communication costs incurred when trying to tame a parallel algorithm. Students can learn of dwarvish parallel patterns and associated phenomena such as a sequentially elegant quicksort quickly foundering in the presence of unamortized distributed memory costs.

This is a good time to consider how to squeeze weeks and weeks of new material on parallelism into a semester. Something has to give and something will give, but this is not a new dilemma. It is something we each faced when first crafting what we will cover in a course. It is something we face to a greater or lesser extent every time we re-teach a course given the pace of change in our discipline.

Now it is time for an anecdote. Tom interviewed Dave Paterson as part of the “Teach Parallel” series of interviews. The interview ranged over many topics, one of which was Dave’s fourth edition of “Computer Organization and Design”, which gloriously has parallel topics woven into each chapter. This led to talking with Dave’s publisher about targeting an adaptation of the book towards community colleges, such as Contra Costa College where Tom teaches. The publisher was surprised to learn no dilution of the 703 pages was desired. Tom plans to cherry pick the material to use in his Computer Architecture course, which is a continuation of an experiment he’s been running in all his courses, which allows the entire book is covered, just at varying depths. It is important for Tom to convey how to be a good student, part of which is being able to self-learn from practitioners’ resources. This raises a good point: more textbook support for parallelism is going to make this whole process a heck of a lot easier. Unfortunately, it takes awhile to prime the curricular pump.

Computer architecture has traditionally incorporated elements of parallelism and concurrency; via semaphores and atomic operations, pipelines and multiple functional units, SMP architectures, and instruction and data paths. It has always been the place where the key hardware issues of the current architectures inform the software designed to run on it.

There are no easy answers, but there really are clear steps. We need to help students get to a place where they think of a single processing unit as just a special case of multiple processing units, much like they now learn to view a single variable as a special case of an array.

About the Authors

Thomas Murphy is a professor of Computer Science at Contra Costa College (CCC). He is chair of the CCC Computer Science program and is director of the CCC High Performance Computing Center, which has supported both the Linux cluster administration program and the computational science education program. Thomas has worked with the National Computational Science Institute (NCSI) since 2002. He is one of four members of the NCSI Parallel and Distributed Working group, which presents several three to seven day workshops each year, and helps develop the Bootable Cluster CD software platform, the LittleFe hardware platform, and the CSERD (Computational Science Education Reference Desk) curricular platform.

Paul Gray is an Associate Professor of Computer Science at the University of Northern Iowa. He created the Bootable Cluster CD project (http://bccd.net/) and provides instructional support for the National Computational Sciences Institute summer workshops on Cluster and Parallel Computing. He was SC08 Education Program Chair and serves on the executive committee for the SC07-11 Education Program.

Charlie Peck is the leader of the The Cluster Computing Group (CCG) at Earlham College, a student/faculty research group in the Computer Science department. The CCG is the primary design and engineering team for LittleFe, developers of computational science software, e.g., [email protected], and technical contributors to Paul Gray’s Bootable Cluster CD project. Additionally, Charlie is the primary developer on the LittleFe project.

Dave Joiner is an assistant professor of Computational Mathematics in the New Jersey Center for Science, Technology, and Mathematics Education. The NJCSTME focuses on the training of science and math teachers with an integrated view of modern math, science, and computing. Additionally, Dave has collaborated since 1999 with the efforts of the Shodor Education Foundation, Inc., and the National Computational Science Institute.  He currently serves as a Co-PI on the Computational Science Education Reference Desk, the Pathway of the National Science Digital Library devoted to computational science education.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This